EUSO(Extreme Universe Space Observatory)

戎崎俊一 理化学研究所 EUSO-Japan

EUSOの 観測 方法

宇宙線が大気中に飛び込んで来て、空気シャワーをつくり、シャワー中の電子が窒素や窒 素イオンを励起して蛍光を発する。

この蛍光を口径2.5mの望遠鏡で観測する。

空気シャワーにそって発せられたチェレン コフ光の地上や海上での反射光を観測す

EUSOの視野

EUSO ~ 300 x AGASA ~ 10 x Auger 観測状態の時、~ 3000 x AGASA ~ 100 x Auger 3年間で2000イベント程度(10²⁰eV以上)

EUSO expected statistics beyond GZK cut-off value will allow:
 GZK recovery and Compact source study – GZK-suppressed mode
 Detailed Spectrum study/Compact sources spectra – Super-GZK mode

EUSO望遠鏡の 構造と各国の責任分担

Electronics

single photon counting, fast 10 ns, track time sampling (Gate time unit) 2.5 msec

Focal Surface Support Structure

Focal Surface

Focal surface, single photon counting, high pixelization, 2*10⁵ pixels Japan

Europe

Fresnel Lens 2

Entrance pupil

Fresnel Lens 1

Double sided, 2.5 m diameter

宇宙ステーションに取り付けられる 予定のEUSO望遠鏡

直径2.5mのEUSO望遠鏡は2010頃に欧州宇宙機構 (ESA)の責任で国際宇宙ステーション欧州所有のコロ ンバスの外部観測パレットに装着される予定である

Phase-A Ext. 最終報告(2004.7)

- EUSOのPhase-B進行が内定
- Phase-B(当面の間)はESA-MSM(宇宙ステーション担当部署)が責任を持つ

 もともとD-MSM部とD-SCI部の共同ベンチャー
- Augerの結果がどうあろうと、EUSOの価値は変わらない

- 設計変更は基本的にはない

- 打ち上げ機会として日本のHTVの可能性を提案
- イタリア宇宙機関は約40Meuroの支払いの約束を 行う

THO O	Report on the Phase A Study	DOCUMENT:	EUSO-PHREP-005
EUSU		ISSUE:	1
	Section E – EUSO Mission Scientific Management	REV SION:	-
		DATE:	21 APRIL 2004
A COL		PAGE:	E 16/18

THIS REPORT SUPERSEDES CHAPTER 11 OF THE PRECEDING REPORT PHASE A STUDY, SUSO-PI-REP-003-1,31AUGUST 03

Nation	Direct	Indirect	Funding	Status
	Costs	Costs (M€)	Agencies	
	(M€)			
Italy	40	16	ASI, INFN,	Soburined to ASE
			University	
France	10	8	CNES, IN2P3,	Submitted to CNES in another data (CNES)
			University	only training staff
Germany	4.8	6	DLR, MPI,	Letter of intent by Discussion of 1000
· ·			University	Director of SIP1
Portugal	4	2.6	GRICES, LIP	Minica approved end-
-			Í Í	to-end, with allocation to be reconfirmed on
				yearly basis.
Switzerland	5	2.4	Prodex	Negotiation with NE-COVEN and
			Observatoire de	Funding could
			Neuchatel	increases to $(14 - 17)$
Innan	16	12	TAVA DIFFN	Phase A/B financed by
ouban	10	12	Ministry of	KIKEN . Proposal
			Education and	being prepared for Phase C/D
			Science	
USA	36M\$ - 30ME	-	NASA	Mittion approved end- te-end
Spain	3.8	TBD	Ministry of Science	Letter of latent from
			& Technology	National Sparre
			Programa Nacional	Programme.
			<u>be nivestigation</u> Espacial	
Brazil	3	TBD	AEB	Letter of Intent from President of ALD

The additional 16.00 M \in required to cover the estimated deficit will be recovered by possible savings or by transferring to the available indirect costs.

ReFoundation会議

- イタリア宇宙機関:ASI
 40MEの支出が不可能
- ヨーロッパグループの一部
 - ESA: Cosmic Visonで独立衛星として提案
 打ち上げは2015年以降(早くて)
- 日本·米国
 - JEM/EF設置で再検討
 - 米国はMIDEX提案へ出しなおし

JEM/EFへ装着可能か?

- EUSO現状
 - 全重量1826kg :2500kg(#2#9#10)
 - 消費電力: 3kW

1141W (稼動中) OK 517W(非稼動中) OK

263W(サバイバル) 0.1kW

- 熱制御: 1141W: 3kW

Traditional Project Lifecycle

JEM/EUSOへの拡張

敷居エネルギーを下げる: E_{th} ~ 10¹⁹ eV

- 1. **口径**(2.5m→3.5m) x2 reduction.
- 2. 新レンズ材(CYTOP)と新設計 x1.5 reduction.
- 3. 高感度検出器(SiPMT) x3 reduction.
- 4. 高効率トリガ(LBL)x2 reduction.
- 5. **斜め向きモード** x5 exposure E ≥10²⁰ eV
- JEM/EUSO (normal + tilt-stage1) :
 - 1800 AGASA/yr = 90 Auger/yr
- Super-EUSO II brings to 5000 AGASA = 214 Auger/yr

宇宙線物理への最初のチャレンジ

- 瞬間的有効体積: 6×10⁵km²sr
- Duty cycle ~20%
- 大気モニタ= AS + EUSO
- 観測エネルギー範囲: E > 5 × 10¹⁹eV. (E_{th} → 10¹⁹ eVの可能性)

~ 10³ events/year expected according to AGASA ;

~ 10² events/year expected if GZK is present.
 全天に対して一様な露出
 ニュートリノにたいして10¹³ トンのターゲット質量

ニュートリノ天文学の開始

新物理

大気科学:

雷放電、上向きシャワー(Tauニュートリノか弱相互作用粒子)、流星

ROADMAP Comparison of expected Exposures for various Experiments.

Experiment	Acceptance (Km ² sr)	Assumed operational	Operation (N years)	Duty cycle(%)	Exposure (Km ² sr year)	Units AGASA
AGASA	160	Completed	10.2	100	1.6 x10 ³	1
Auger South	7.000	2006-2015	10	100	7.0 x10 ⁴	45 (1ΣA)
Auger South	7.000	2006-2015	10	100	7.0 x10 ⁴	44
+ (Auger North)	(7.000)	(2009-2015)	(7)	(100)	+ (5.0 x10 ⁴)	(31)
Total Max					(12.0 x10 ⁴)	(75)
EUSO EUSO tilt (Super-EUSO)	600.000 3,000,000 (3,750,000x2)	2012-2014 2014 - (2020s)	3 yrs 10 yrs (10 yrs)	20 20 (20)	3.6 x10 ⁵ 6 x10 ⁶ (1.5 x10 ⁷)	234 [5.2ΣΑ] 3750 [85ΣΑ] (9400) [208ΣΑ]

EUSO

Exposure (AGASA unit)

超高エネルギーニュートリノ天文学

ガンマ線同時観測による上向きシャワーの検出

In case fluorescence is not detected for an AS event, the Cherenkov light reflected on ground-clouds can well mimic the neutrino direct Cherenkov signal. But,

SCINTILLATOR DISCRIMATES TRUE FROM FALSE. Binocular does not solve this.

まとめ

- JEM/EUSOとして再出発
 米国・ヨーロッパとの協力
 ロシアのTUSで実証実験
- JEM第二期利用に向けての準備を開始
 - エネルギー閾値を下げる努力
 - ガンマ線検出器
- 地球観測の科学

- 雷、夜光

大気発光現象の科学

地上から観測したOH 大気光の変化

ハイビジョンカメラによる 2001年のしし座流星群

雷放電に伴う成層圏・中間圏・下部 熱圏でのトランジェントな発光現象

What does it mean "TUS"?

- Do not try to decode this your self: – Космические Лучи
 - Сверх Высоких Энергий

Single eye option

Project Design. Optics

Segmented Fresnel Mirror

- The mirror- concentrator mass is less than 20 kg for the mirror area 1.4 m².
- Accuracy in mirror ring profiles \pm 0.01 mm.
- Stability of the mirror construction in the temperature range from -80° to + 60° C.
- 10 parabolic rings with focal distance 1500 mm
- the mirror surface is protected by SiO2
- The mirror development mechanism makes the mirror plane with the angular accuracy less than 1 mrad.

Project Design. Optics

 A real sample of the mirror segment

赤: <mark>焦点面上でのシャワーイメージ</mark> 白: PDMを平面に展開したときのシャワーイメージ

日本版シミュレータでのEUSO性能

初期解析結果(10²⁰eV空気シャワー解析)

2.0度

15%

82g/cm²

日本版シミュレータでのEUSO性能 初期解析結果(トリガ効率)

ENERGY (eV)

EUSO angular resolution

CRIS, G. D'Ali Staiti, Catania, June 4, 2004

CRIS, G. D'Alì Staiti, Catania, June 4, 2004

X_{max} resolution

Scientific requirement is 35 g/cm2 to perform primary separation(heavy.vs.light) Actual result when cloud altitude is assumed or no cloud is present

EUSO angular resolution

CRIS, G. D'All Staltl, Catania, June 4, 2004

Downward neutrino acceptance for EUSO

 \checkmark 2 * 10¹⁸ g is the total target mass under the FOV

✓ reduction due to trigger efficiency is calculated by full simulation. Clouds distribution is considered

✓ reduction due to selection efficiency needed for 10⁻⁴ proton rejection has been calculated from full simulation

✓ results show a sensitivity around 10 times AUGER for neutrino in the10²⁰eV energy region