

シャワー検出器のためのSciFi読み出し フロントエンド回路の開発

神奈川大 田村忠久 他 CALET チーム

http://calet.n.kanagawa-u.ac.jp

CALETによるスペースステーションでの宇宙線観測

2005年1月6-7日

P8

第2回 宇宙線将来計画シンポジウム

粒子入射位置・方向決定および粒子判別のために、IMCでは1~3000 MIP のダイナミックレンジが必要

MAPMT(64ch)のLEDによるリニアリティテスト(ダイナミックレンジ)

Deviation from linearity as a function of the output charge

5%以内のリニアリティを許容すると、PMTのダイナミックレンジは 出力電荷で、11pC (HV 550V)、20pC (HV 650V)までとなるが。。 Relation between number of p.e. and output charge

PMTの各出力電荷をそれぞれのGainをもとに 光電子数(入力光に比例)に戻すと、<u>HV 550Vの方が</u> PMTへの入力光に対してダイナミックレンジが広い

Analog ASICの開発: MAPMT読み出しのためのViking Chipの最適化

Viking Chip (VA32)			
(Pre.Amp.+Shaping Amp.+Sample Hold) x 32ch		VA32HDR2	VA32HDR14
Multiplexer 読み出し			(design spec.)
Hold Delay Time hold signal	Noise (RMS)	0.2 fC (1.2x10 ³ e)	0.75 fC (4.7x10 ³ e)
	1MIP	3.6 fC (2.2x10 ⁴ e)	3.75 fC (2.3x10 ⁴ e)
	1MIP/Noise	18	5
Shaped Signal	Maximum Input	±0.8 pC (5.2x10 ⁶ e)	±15 pC (9.4x10 ⁷ e)
	Linearity		1.15 %@ - 8 pC
The former T			2.9 % @ -12 pC
			7.45 %@ -15 pC
Hold	Gain	370 µ A/pC	73 μ A/pC
VA32HDR2 VA32HDR14	Dynamic Range	230	4000
	Peaking Time	1~3 μs	∼1.85 µs
	Supply Voltage	$\pm 2 V$	$\pm 2.5 \text{ V}$
	Power	1.5 mW/ch	3.4 mW/ch
	Size [mm ²]	3.642 x 3.355	4.375 x 3.330

2005年1月6-7日

2005年1月6-7日

第2回 宇宙線将来計画シンポジウム

O SciFi読み出し

[t]

ADC ch.

MAPMT+ Analog ASICによって0.2 ~ 2750 MIPs のダイナミックレンジを実現し、低消費電力で10TeVの電子まで検出可能である ことをビーム実験で確認した。

<u>フライトモデル開発のための今後の課題</u>

- 1) 耐放射線性の高いVLSI(0.35 µmプロセス、SOIなど)を検討。これによって同時に低ノイズ化、低消費電力化も期待できる。
- 2) ADCも処理速度5倍(500kHz)のものを採用して、FECの高速化または低ノイズ化をはかる。

O BGO読み出し

•重粒子によるビームテストにより、リニアリティについてBGOは3.7%、PbWO₄は6%、エネルギー分解能はBGOで1.1%、PbWO₄で 0.17% (10GeV)を得た。

•CALETプロトタイプによるCERNビーム実験で、エネルギー分解能3.7%(電子100GeV)を確認し、装置の性能を確認できた。 今後の開発方針

10⁶のダイナミックレンジを実現するために、複数のPDを用いた読み出しと、Analog ASICによるフロントエンド回路のVLSI化を行う。

本研究は財団法人日本宇宙フォーラムが推進している「宇宙環境利用に関する地上公募研究」プロジェクトの一環として行われている。