Gamma-ray Universe Revealed by Fermi Gamma-ray Space Telescope

Hiroyasu Tajima

Kavli Institute of Particle Astrophysics and Cosmology SLAC National Accelerator Laboratory (Stanford Linear Accelerator Center)

ICRR Seminar December 16, 2008 Kashiwa, Japan

Outline

- * Overview of Fermi Large Area Telescope (LAT)
- * Instrument Performance after Launch
- *** Science Results**
 - * Overview
 - * Discovery Gamma-ray Pulsars
 - * High-Energy Emission from Gamma-ray Bursts
- * Future Prospects
 - * Extended Sources
 - * Cosmic-ray Electrons

Fermi/LAT Collaboration

Sermi

Gamma-ray Space Telescope

> Stanford University & SLAC NASA Goddard Space Flight Center Naval Research Laboratory University of California at Santa Cruz Sonoma State University University of Washington Purdue Univeristy-Calumet Ohio State University University of Denver

Commissariat a l'Energie Atomique, Saclay CNRS/IN2P3 (CENBG-Bordeaux, LLR-Ecole polytechnique, LPTA-Montpellier)

Hiroshima University Institute of Space and Astronautical Science Tokyo Institute of Technology RIKEN

Instituto Nazionale di Fisica Nucleare Agenzia Spaziale Italiana Istituto di Astrofisica Spaziale e Fisica Cosmica Royal Institute of Technology, Stockholm

Royal Institute of Technology, Stockho Stockholms Universitet

Fermi/LAT Overview

Satellite experiment to observe gamma rays from Universe

- * Wide energy range: 20 MeV 300 GeV
- * Large effective area: > 9000 cm² (~6xEGRET)
- * Wide field of view: > 2 sr (~6xEGRET)

* Scientific objectives

* Dark matter

Sermi

Gamma-ray pace Telescope

- Neutralino annihilation
- * Particle acceleration
 - Origin of cosmic rays

* Pair-conversion telescope

- * "Clear" signature
- * Background rejection

Fermi/LAT Overview

- Satellite experiment to observe gamma rays from Universe
 - * Wide energy range: 20 MeV 300 GeV
 - * Large effective area: > 9000 cm² (~6xEGRET)
 - * Wide field of view: > 2 sr (~6xEGRET)

* Scientific objectives

* Dark matter

Sermi

Gamma-ray Space Telescope

- Neutralino annihilation
- * Particle acceleration
 - Origin of cosmic rays

* Pair-conversion telescope

- * "Clear" signature
- * Background rejection

- * Tracker (TKR): conversion, tracking
 - * Angular resolution is dominated by scattering below ~GeV
 - * Converter thickness optimization

* Calorimeter: energy measurement

* 8.4 radiation length

serm

Gamma-ray pace Telescope

* Use shower development to compensate for the leakage

* Anti-coincidence detector:

* Efficiency > 99.97%

Anti-coincidence Detector Segmented scintillator tiles 99.97% efficiency

Gamma-ray Universe Revealed by Fermi GST, H. Tajima, ICRR Seminar, December 16, 2008

Csl Calorimeter

4 radiation length

A LEAST NAME OF A LEAST NAME OF

Launch

* Milestones toward launch

Final Tracker module delivered

LAT integration complete

LAT environmental test finished * 2007/10: GLAST integration complete * 2008/02: GLAST environmental test finished * 2008/06/11- GLAST launch * 2008/06/24- LAT power on

A LUZE LOUGH

Launch

* Milestones toward launch

Final Tracker module delivered

LAT integration complete
* 2006/10:

LAT environmental test finished * 2007/10: GLAST integration complete * 2008/02: GLAST environmental test finished * 2008/06/11- GLAST launch * 2008/06/24- LAT power on

A LUNCH INC.

Launch

* Milestones toward launch

Final Tracker module delivered

LAT integration complete
2006/10:

LAT environmental test finished * 2007/10: GLAST integration complete * 2008/02: GLAST environmental test finished * 2008/06/11- GLAST launch * 2008/06/24- LAT power on

A LOCAL NO.

Launch

* Milestones toward launch

inal Tracker module delivered

LAT integration complete
* 2006/10:

LAT environmental test finished * 2007/10: GLAST integration complete * 2008/02: GLAST environmental test finished * 2008/06/11: GLAST launch * 2008/06/24: LAT power on

LAT Operations After Launch

H. Tajima, ICRR Seminar, December 16, 2008

Dermi

Gamma-ray Space Telescope

H. Tajima, ICRR Seminar, December 16, 2008

Performance After Launch

Dermi

Gamma-ray Space Telescope

- Apparent efficiencies slightly lower due to accidentals
- Point spread function (PSF)
 consistent between data and MC

- * Detection of transient sources
 - * AGNs

Gamma-ray pace Telescope

- ***** Gamma-ray binaries
- * Gamma-ray bursts (GRBs)
- * Gamma-ray pulsars
 - * Discovery of new gamma-ray pulsars
 - * Detection of radio pulsars
 - * Energy cut-off for Vela pulsar

 Note: All results are preliminary except for CTA1 pulsar (published in Science)

Detection of Transient Sources

Fermi covers all sky in 3 hours

* Detection of transients

*** Variability studies**

• 3C 454.3

Dermi

Gamma-ray Space Telescope

- PKS 1502+106
- Not seen by EGRET

* Extragalactic sources

Lamma-ray

- * 1701: A possible new γ-ray flaring blazar: PKS 1454-354
- *1707: 3C 273 in flaring state
- * 1743: PKS 1510-089 outburst
- *1744: Strong detection of blazar AO 0235+164
- * 1759: Gamma ray activity in three blazars: 3C 66A, PKS 0208-512, PKS 0537-441
- * 1784: Strong activity on short timescales of blazar AO 0235+164
- * 1864: Increasing gamma ray activity of blazar 3C 279
- * Galactic place sources
 - *1771: Brightening of Galactic plane source 3EG J0903-3531
 - *1788: New Gamma-ray transient in Galactic place: J0910-5041
 - * 1850: Fermi LAT Observations of the Cygnus Region

EGRET Pulsars

In only a few days, *Fermi* confirmed the EGRET pulsars, finding new γ -ray pulsars as well

Sermi Gamma-ray Space Telescope

0.5

0.6

0.3

0.2

0.4

0.7

0.8

Gamma-ray Universe Revealed by Fermi GST, H. Tajima, ICRR Seminar, December 16, 2008

1.0 Pulse Phase

Studies of Vela Pulsar

H. Tajima, ICRR Seminar, December 16, 2008

sermi

Gamma-ray Space Telescope

Discovery of Gamma-ray Pulsar

- Discovery of gamma-ray pulsar in CTA 1 after 20 days
 - *900 events with E>100 MeV
 - * P=315.86 ms

sermi

Gamma-ray pace Telescope

> * Gamma-ray flux: 1–10% of E_{rot}

Gamma-ray Universe Revealed by Fermi GST, H. Tajima, ICRR Seminar, December 16, 2008

Gamma-ray Space Telescope

Gamma-ray Space Telescope

EGRET pulsars

Dermi

Gamma-ray Space Telescope

+ Pulsars discovered using radio ephemeris

Fermi Gamma-ray Pulsars

▲ EGRET pulsars

Sermi

Gamma-ray Space Telescope

- + Pulsars discovered using radio ephemeris
- Pulsars discovered in blind search

Fermi Detection of GRBs

- * GBM detections * 102 GRB since 7/14
- * LAT detections

Dermi

Gamma-ray Space Telescope

- * GRB080825C GCN8183 Bouvier et al.
- & GRB080916C
 GCN8246
 Tajima et al.
- * GRB081024B GCN9407 Omodei et al.

GRB080916C Detection

GBM localization (GCN8245) RA = 121.8°, Dec= -61.3° (±1° at 68% C.L., syst. 2°-3°) LAT localization (GCN8246) RA = 119.88°, Dec = -56.59°

serm

Gamma-ray

(±0.09° @ 68%, ±0.13° @ 90% C.L.) systematic error<0.1° (preliminary)

Swift/XRT follow-up (GCN8261)

* GROND follow-up (GCN8257)

♦ RA = 119.8472°, Dec = -56.6383° (±0.5" at 68% C.L.)

T₀=00:12:45 September/16 2008

* z = 4.2±0.3 (Greiner et al. 08, submitted to Science)

* Apparent delay of high-energy emission

* Similar features

Dermi

Gamma-ray Space Telescope

- * Apparent delay of high-energy emissions
- * Highest energy is very late (GRB080825C)
 - No detectable low energy emissions

Extra Component?

- * No conclusive evidence of extra component
 - * Effect of EBL

sermi

Gamma-ray Space Telescope

- HE absorption
- Transparency: 0.03–1.0 (model dependent)

Time bin 'd'

Band + power law

Band function

* Soft to hard evolution

* HE (E>100 MeV) emission shows different temporal behavior

- * Delayed HE emissions
- * Extended HE emissions
- ✤ E_{iso} ~

*

sermi

Gamma-ray pace Telescope

- * Minimum bulk Lorentz factor
 - *** EBL effect not included**
- * Lorentz invariance violation

- * Extended source analysis with image restoration technique
 - * Richardson-Lucy deconvolution with event by event PSF
 - * Wavelet filtering to suppress spurious features
- * Example with E>1 GeV (LAT data)

Sermi

Gamma-ray Space Telescope

Demonstration with Point Source

- * Demonstration of image restoration with point sources
 - * Factor of ~3 improvement in peak intensity

Dermi

Gamma-ray Space Telescope

* Effective "removal" of point sources with little residual

Cosmic-ray Electron?

Recent report by ATIC indicates high energy excess
 Could be interpreted as evidence of dark matter

Dermi

Gamma-ray Space Telescope

Fermi can measure CR electron spectrum with high statistics

- * Fermi was launched successfully on June/11 2008
- * Fermi LAT has been working very stably in Space
- Fermi LAT demonstrating very exciting science in an early stage of its operations
- * Very exciting science ahead of us

Sermi

Gamma-ray pace Telescope

backup slides

Image restoration with E>0.2 GeV gives similar image as E>1 GeV even though <u>PSF@0.2</u> GeV is huge (~4°).

Sermi

Gamma-ray Space Telescope

