

TeV gamma-ray astrophysics: today and tomorrow

German Hermann, MPI für Kernphysik

ICRR, March 17, 2009

Part I: Observations with the High Energy Stereoscopic System

- Introduction
- ➤ The H.E.S.S. experiment
- ➢ H.E.S.S. observations
 - Galactic sources
 - Extragalactic physics
 - Quantum Gravity
 - Dark Matter search
- ➢ A glance on H.E.S.S. phase 2

German Hermann, MPI für Kernphysik

Part I: Observations with the High Energy Stereoscopic System

Introduction

- ➢ The H.E.S.S. experiment
- ➢ H.E.S.S. observations
 - Galactic sources
 - Extragalactic physics
 - Quantum Gravity
 - Dark Matter search
- ➢ A glance on H.E.S.S. phase 2

German Hermann, MPI für Kernphysik

ICRR, March 17, 2009

The Cosmic Ray Puzzle

Mostly nuclei p, He, ... Fe also e[±] few γ, ν
Non thermal spectrum dN/dE ~ E^{-α}
Isotropic distribution

Discovery in 1912, but

- Cosmic ray origin ?
- Sources ?
- Processes ?

Potential Sources and Processes Clusters of Galaxies

Nebula Binary Systems

Pulsar

- SNR as sources of CR
- Acceleration of relativistic particles
- Energy transfer in pulsars
- Environment of neutron stars

and Black Holes ➢ Properties of relativistic jets

Indirect search for DM
 Cosmology: diffuse EBL
 GRBs and GRBRs

Tracers to Cosmic Ray Accelerators

Source of Cosmic Rays

or

Charged Cosmic Ray

Interstellar magnetic field : $B \sim 3 \mu G$ Curvature radius at 1 TeV : $r \sim 0.3 \times 10^{-3} pc$

Tracers to Cosmic Ray Accelerators

 $p + p \rightarrow \pi^{o} + X + \dots$

 $\rightarrow \gamma + \gamma$

Source of Cosmic Rays

Infer properties of *primary particle distribution* in the sources and their *interactions*

- Energy Spectra flux, range, shape
- Source Morphology
- Variability/Periodicity
- + Multi-Wavelength (radio, IR, optical, X-ray)

γ<mark>- Ray</mark> (100 GeV)

Stereoscopy:

- ✓ Angular resolution
- ✓ Energy resolution
- ✓ Background rejection

✓ Sensitivity

High Energy Stereoscopic System

Full Operation since January 2004

120 m

H.E.S.S. @ Farm Goellschau Khomas Highlands 1800 m asl Namibia © Philippe Plailly

The Telescopes

Alt-Azm mount 107 m² mirror area 380 mirrors each 15 m focal length Rigid mount

5 deg FoV 960 Pixels / PMTs Fast Trigger [nsec] GHz sampling, 16 nsec Int.

- → Sky Surveys
- \rightarrow Extended sources
- \rightarrow Serendipitous discoveries
- \rightarrow High energy performance

High Energy Stereoscopic System

Telescopes coupled on hardware level ("central trigger")

Stereo Performance Parameters

State of the Art

Energy threshold:	100 GeV
Energy resolution:	15 %
Field of view:	~ 4 deg
Angular resolution:	0.05° - (
Pointing accuracy:	~ 10 arcs
Signal Rate:	~55 / min
Sensitivity:	1 Crab in

15 % ~ 4 deg 0.05° - 0.1° ~ 10 arcsec ~55 / min (Crab-like) 1 Crab in 30 sec 0.01 Crab in < 25 h

The sky in TeV gamma rays

Part I: Observations with the High Energy Stereoscopic System

Introduction
The H.E.S.S. experiment
H.E.S.S. observations
Galactic sources
Extragalactic physics
Quantum Gravity
Dark Matter search
A glance on H.E.S.S. phase 2

German Hermann, MPI für Kernphysik

ICRR, March 17, 2009

40++ sources, scale saturated at 20 σ

- Stellar winds
- Supernova remnants
- Pulsar wind nebulae
- Binary Systems
- Molecular Clouds
- Galactic center"Dark sources"

Supernova remnants

Molecular Clouds

SNRs as Sources of Galactic Cosmic Rays

ASCA SN 1006 data: "first strong observational evidence that very-high-energy cosmic rays are produced in SNR shocks"

(Koyama, Nature 1995)

Particle acceleration to beyond 100 TeV

See also: H.E.S.S., Nature (2004)

2004-2006 Data

Proof of TeV emission from the shell of SNRs

What particles are accelerated ... ?

Source of Cosmic Rays

Infer properties of *primary particle distribution* in the sources and their *interactions*

- Energy Spectra flux, range, shape
- Source Morphology
- Variability/Periodicity
- + Multi-Wavelength (radio, IR, optical, X-ray)

What particles are accelerated ... ?

 $p + p \rightarrow \pi^{o} + X + \dots$

 $\rightarrow \gamma + \gamma$

Source of Cosmic Rays

... protons ?

Infer properties of *primary particle distribution* in the sources and their *interactions*

- Energy Spectra flux, range, shape
- Source Morphology
- Variability/Periodicity
- + Multi-Wavelength (radio, IR, optical, X-ray)

What particles are accelerated ?

Β

TeV electron

Source of Cosmic Rays

... electrons ?

ext. / ` photon

X-ray

ſeV

/-ray

Infer properties of *primary particle distribution* in the sources and their *interactions*

- Energy Spectra flux, range, shape
- Source Morphology
- Variability/Periodicity
- + Multi-Wavelength (radio, IR, optical, X-ray)

Assume Electrons: Synchrotron + Inverse Compton

Assume Electrons: Synchrotron + Inverse Compton

Collision of protons w/ ambient gas : $p + p \rightarrow \pi^{\circ} + X$

Towards population studies of shell-type TeV SNRs ...

... and of TeV - SNR associations

both candidates for the support of hadronic scenario for TeV- γ -ray production H.E.S.S. (2008)

When cosmic rays meet targets ...

Which fraction of SNR energy goes into cosmic-ray nuclei?

How/when are particles Released ?

Interacting SNR probe Nature of accelerated particles, particle release, and particle propagation in our galaxy

W28: \sim 35-150 kyrs old Molec. clouds \sim 0.5 – 1 10E5 M_{\odot}

NANTEN CO 10-20 km/s Moriguchi, Y. YFukui

SNR interacting with molecular clouds

Which fraction of SNR energy goes into cosmic-ray nuclei?

How/when are particles Released ?

If hadronic emission and association w/ clouds ok:

 \rightarrow x 10-30 higher CR density than in solar system

Aharonian (H.E.S.S.), A&A (2008)

Discovery Potential: "Dark Sources"

A bias free view on the sky: \rightarrow new class of TeV sources

A bias free view on the sky: \rightarrow new class of TeV sources

No counterparts in other energy bands seen (radio, IR, optical, X-ray, ...)

Aligned with Galactic plane All are extended: O (10 arcmin) Hard spectrum: $\Gamma \sim 2.1 \dots 2.5$

- → Maximum energy output of these sources in TeV γ-rays
- \rightarrow Hadron accelerator ?
- \rightarrow Old PWN ?
- \rightarrow GRB remnant ?
- \rightarrow Dark Matter ?

HESS A&A 477 (2008)

A bias free view on the sky: \rightarrow new class of TeV sources

No counterparts in other energy bands seen (radio, IR, optical, X-ray, ...)

→ More sensitive X-ray and radio observations following

the TeV detection

HESS A&A 477 (2008)

Pulsar discovery triggered by H.E.S.S.

Part I: Observations with the High Energy Stereoscopic System

- Introduction
- ➢ The H.E.S.S. experiment
- ➢ H.E.S.S. observations
 - Galactic sources
 - Extragalactic physics
 - Quantum Gravity
 - Dark Matter search
- ➢ A glance on H.E.S.S. phase 2

German Hermann, MPI für Kernphysik

ICRR, March 17, 2009

Extragalactic Physics with H.E.S.S.

Object	Ζ	Туре
Cen A	0.001	AGN (FR I)
M87	0.004	AGN (FR I)
Mkn 421	0.030	BLLac (HBL)
PKS 0548-322	0.069	BLLac (HBL)
PKS 2005-489	0.071	BLLac (HBL)
RGB J0152+017	0.08	BLLac (HBL)
PKS 2155-304	0.116	BLLac (HBL)
1ES0229+200	0.139	BLLac (HBL)
H2356-309	0.165	BLLac (HBL)
1ES 1101-232	0.186	BLLac (HBL)
1ES 0347-121	0.188	BLLac (HBL)
PG 1553+113	>0.25 ?	BLLac (HBL)

Detection of 12 AGN Discovery of 9 AGN Upper Limits on >20 Objects (< 0.01 ... 0.05 Crab)

The Extragalactic Background Light

EBL contains information on history of star- and galaxy formation

→ Direct measurement very difficult due to foreground light

EBL contains information on history of star- and galaxy formation

→ Direct measurement very difficult due to foreground light

Absorption through pair production with diffuse EBL in FIR to UV (for TeV to GeV)

Absorption through pair production with diffuse EBL in FIR to UV (for TeV to GeV)

Reconstructing the EBL density

Reconstructing the EBL density

Assume minimum power law index Γ = 1.5 at source

"Adjust" EBL such, that observed spectrum compatible with assumed source spectrum

 \rightarrow EBL intensity

The Extragalactic Background Light

EBL is at lower limit, as obtained from Hubble galaxy count

H.E.S.S., Nature (2006)

- Confirmed by 1ES0347, z = 0.188 H.E.S.S., A&A 473 (2007)
- Additional constraints on Mid-IR by 1ES 0229 w/ hard spectrum :

→ EBL (2-10 μ m) ~ λ^{-1}

H.E.S.S., A&A 475 (2007)

- EBL is at lower limit, as obtained from Hubble galaxy count
- No significant contribution of pop III stars (z ~ 7...15)
- The Universe is more transparent to Gamma-Rays than expected
- We can "see" further than expected, more sources accessible

Part I: Observations with the High Energy Stereoscopic System

➢ The H.E.S.S. experiment

- Overview of observations
 - Classes of Galactic sources
 - Extragalactic physics
 - Quantum Gravity
 - Dark Matter search
- ➢ A glance on H.E.S.S. phase 2

skip

German Hermann, MPI für Kernphysik

ICRR, March 17, 2009

Monthly light curve: 2002 ... 2006

- Source monitored since 2002 (~240 h)
- Average flux : 3.95 +- 0.39 10⁻¹¹ cm⁻² s⁻¹
- Huge outburst in July 2006 two main flares of 28 and 30 July

Postulate:

"...that light is always propagated in empty space with a definite velocity c which is independent of the state of motion of the emitting body"

A.Einstein (1905)

Postulate:

"...that light is always propagated in empty space with a definite velocity c which is independent of the state of motion of the empty body"

A.Einstein (1905)

 \rightarrow Be aware of *astrophysical* source effects (spectral changes)

 \rightarrow Look at modified cross correlation function (MCCF)

MCCF: peak at 20 sec, but

... MCCF peak distribution shows that delay is consistent with zero !!!

Most constraining limit on speed of light modification to date:

 $E_{QG} > 5 \% M_{P}$

HESS, PRL 101 (2008)

Part I: Observations with the High Energy Stereoscopic System

➢ The H.E.S.S. experiment

- Overview of observations
 - Classes of Galactic sources
 - Extragalactic physics
 - Quantum Gravity
 - Dark Matter search
- ➤ A glance on H.E.S.S. phase 2

German Hermann, MPI für Kernphysik

Improved sensitivity (x1.5 - 2)in current regime up to ~ 1 TeV Energy range down to ~50 GeV will finally become accessible

Near Future: H.E.S.S. Phase II

Near Future: H.E.S.S. Phase II

Last fall in Annecy

H.E.S.S. collaboration in front of camera mechanics test setup (09/2008)

Part I: Conclusions from H.E.S.S. observations

From source hunting to real astrophysics

- Many discoveries, population studies now possible
- 'Precision' measurements
- Cosmology and particle physics
- Composition (e[±], Fe)
- Still more in the pipeline

The path towards CTA is paved

German Hermann, MPI für Kernphysik

Part II: Design Study for the Cherenkov Telescope Array CTA

- The CTA Observatory
- Design Study for CTA
- Technical Developments
- Outlook

German Hermann, MPI für Kernphysik

ICRR, March 17, 2009

Science Potential

An advanced Facility for ground-based gamma-ray Astronomy

- Current instruments have passed the critical sensitivity threshold and reveal a rich panorama, but this is clearly only the tip of the iceberg.
- Many objects & object classes just below sensitivity limit
- Broad and diverse program ahead, combining guaranteed astrophysics with significant discovery potential

German Hermann, MPI für Kernphysik

Next Generation: Wish list

An advanced Facility for ground-based gamma-ray Astronomy

German Hermann, MPI für Kernphysik

Next Generation: Wish list

An advanced Facility for ground-based gamma-ray Astronomy

German Hermann, MPI für Kernphysik

Next Generation: Wish list

An advanced Facility for ground-based gamma-ray Astronomy

German Hermann, MPI für Kernphysik

Goals for CTA

An advanced Facility for ground-based gamma-ray Astronomy

- provide a next-generation instrument for the user community, to address a wide range of topics in high-energy astrophysics and to explore the full sky
- CTA will allow population studies of TeV sources
- New quality of data: in depth studies on individual objects
- expected large number of detectable objects O(1000) implies operation as open observatory, with appropriate tools for data dissemination and data analysis
- expect (500+) users from astronomy, astroparticle physics, plasma physics, particle physics (DM), cosmology

The CTA Observatory

An advanced Facility for ground-based gamma-ray Astronomy

One observatory with two site operated by one consortium

Northern Array (50 ME)

- → complementary to SA for full sky coverage
- → Energy range some 10 GeV …. ~1 TeV
- → Small field of view Mainly extragal. Sources

Southern Array (100 ME)

- → Full energy and sensitivity coverage
 - some 10 GeV 100 TeV
- → Angular resolution: 0.02 … 0.2 deg
- → Large field of view Galactic + Extragal. Sources

German Hermann, MPI für Kernphysik

How to get there ?

An advanced Facility for ground-based gamma-ray Astronomy

German Hermann, MPI für Kernphysik

Low-energy section a few 24 m telescopes ~ 4-5 deg FoV

Core array: many ~12 m telescopes medium FoV (6-8 deg) Possible Implementation

High-energy section

~ 6 m diameter large FoV (8-10 deg)

Do we know, how to build telescopes ? yes !!!

German Hermann, MPI für Kernphysik

www.cta-observatory.org

Current telescopes not optimized for large-scale production

- Cost would exceed target cost (100 M€ for full site) by factor 1.5 to 2
- Instrument reliability needs to be improved / built-in
- We believe we can built even better / more efficient telescopes
 - wider field of view
 - improved photo sensors
 - improved electronics signal recording
 - overall optimized array layout
- Need to develop tools to operate a user facility and to provide effective data access
 - Observation scheduling and system control
 - Science data center and data access tools

... and there are 'a few' challenges

An advanced Facility for ground-based gamma-ray Astronomy

Will need

O(50-100) telescopes, core array O(10000) m² mirror area O(70) m² photo sensitive area O(100k) electronics channels

→ Factor of 10 in sensitivity with only factor of 10 in M€

Find an optimized array layout that has the required performance

Optimize design for effective production / commissioning, and for stability and high reliability

... and there are 'a few' challenges

An advanced Facility for ground-based gamma-ray Astronomy

Will need O(50-100) telescopes, core array O(10000) m² mirror area O(70) m² photo sensitive area O(100k) electronics channels

→ Factor of 10 in sensitivity with only factor of 10 in M€

Find an optimized array layout that has the required performance

Optimize design for effective production / commissioning, and for stability and high reliability

→ Design Study

Design Study in a joint effort !

CTA

CTA Design Study

An advanced Facility for ground-based gamma-ray Astronomy

Will need

O(50-100) telescopes, core array O(10000) m² mirror area O(70) m² photo sensitive area O(100k) electronics channels

→ Factor of 10 in sensitivity with only factor of 10 in M€

Find an optimized array layout that has the required performance

Optimize design for effective production / commissioning, and for stability and high reliability

German Hermann, MPI für Kernphysik

A complex optimization problem

An advanced Facility for ground-based gamma-ray Astronomy

German Hermann, MPI für Kernphysik

Camera: what Pixel Size is really needed ?

An advanced Facility for ground-based gamma-ray Astronomy

Example: Sensitivity vs Pixel Size

An advanced Facility for ground-based gamma-ray Astronomy

MC: Large Scale End-2-End Simulations

An advanced Facility for ground-based gamma-ray Astronomy

Large scale simulation of "Hyper-Array" with 275 telescopes of 5 different types, sizes, ...

- → Selection of candidate arrays under cost constraints
- \rightarrow Study of performance
- → Assessment of physics performance

~ 0.5 Billion events generated during last few months

Preliminary MC Results: it's feasible !

An advanced Facility for ground-based gamma-ray Astronomy

German Hermann, MPI für Kernphysik

Camera: Electronics and Photon Detectors

An advanced Facility for ground-based gamma-ray Astronomy

German Hermann, MPI für Kernphysik

Cameras: large Quantity of Components

An advanced Facility for ground-based gamma-ray Astronomy

O (100 000) channels photomultipliers, pre-amps light concentrators high voltage, ...

Smart & cost effective design needed ($\pm 10 \text{ E/channel} \Leftrightarrow \pm \sim 1 \text{ Telescope}$)

Current cameras: O(1000 € / chan) ...

German Hermann, MPI für Kernphysik

Photon Detectors: PMTs Baseline Design

An advanced Facility for ground-based gamma-ray Astronomy

Improved PMTs

Cooperation with manufacturers to improve/adapt performance to CTA specific requirements → e.g. low afterpulsing, hi QE cost, cost, cost

> Baseline Design: → PMTs

Keeping an eye on future developments e.g. HPDs (still way too expensive)

Photon Detectors: PMTs Baseline Design

An advanced Facility for ground-based gamma-ray Astronomy

Improved PMTs

Cooperation with manufacturers to improve/adapt performance to CTA specific requirements → e.g. low afterpulsing, hi QE cost, cost, cost

Silicon PMTs

- Under development in many labs and in industry
- Still a significant step to a largearea detector
- Cost and practical performance
 open
- Particularly interesting for lowenergy section
- R&D path for possible upgrades

German Hermann, MPI für Kernphysik

Camera Readout Options

An advanced Facility for ground-based gamma-ray Astronomy

German Hermann, MPI für Kernphysik

Front-end to back-end data transfer

An advanced Facility for ground-based gamma-ray Astronomy

German Hermann, MPI für Kernphysik

CTA

Ethernet-based front-end readout: tests

An advanced Facility for ground-based gamma-ray Astronomy

An advanced Facility for ground-based gamma-ray Astronomy

German Hermann, MPI für Kernphysik

TeV gamma-ray astronomy: today and tomorrow

German Hermann, MPI für Kernphysik

2 m

2 or 2

0

E

ICRR, March 17, 2009