A tale of seven narrow spikes and a long trough: constraining the timing of the percolation of HII bubbles at the tail-end of reionization with ULAS J1120+0641.

Jonathan Chardin , Martin G. Haehnelt-, Sarah E.I. Bosman and Ewald Puchwein





# The high resolution spectrum of ULAS J1120+0641



Fig. 5: Significant transmission of flux in the Ly $\alpha$  forest towards ULAS J1120+0641. The unbinned X-shooter spectrum of ULAS J1120+0641 is shown in grey with a pixel size of  $10 \,\mathrm{km}\,\mathrm{s}^{-1}$ . Shown in blue is the  $1\sigma$  error spectrum, and the derived transmission spectrum is overlaid in red. The seven detections presented in Table 2 are indicated.

- 30 h integration spectrum of ULAS J1120+0641, the high redshift quasar at z=7.084
- Presence of 7 spikes in the redshift range 5.858<=z<=6.122</li>
- Largest Gunn-Peterson trough ever reported (240 cMpc/h) from z=6.122 up to z=7.04 : the near zone of the quasar.

### Using radiative transfer simulation to model the observed spectrum

| Model name               | Box size | Particle number  |
|--------------------------|----------|------------------|
| 512-20-good_h (Fiducial) | 20       | $512^{3}$        |
| 512-20-good-l (Late)     | 20       | 512 <sup>3</sup> |
| 512-20-early (Early)     | 20       | $512^{3}$        |
| 512-40 (Low-res)         | 40       | 512 <sup>3</sup> |
| 512-10 (High-res)        | 10       | 512 <sup>3</sup> |

Table 1. Summary of the different simulations studied in this work.

- Five different models from Chardin+2015
- Three 20 cMpc/h boxes with slightly different reionization hisories
- One 40 and one 10 cMpc/h box to test resolution with same reionization history as the Late 20 cMpc/h model
- Post-processed RT simulation with ATON on top of hydro RAMSES simulation
- Calibrated to reproduce well Lyman alpha forest data in the post reionization IGM

#### The teff evolution in the simulations

 Evolution of the effective optical depth to Lyman alpha inferred from Barnett et al. 2017 (blue dashed curve)

$$\tau_{\text{GP}}^{\text{eff}}(z) = \begin{cases} 0.85 \left(\frac{1+z}{5}\right)^{4.3} & z \le 5.5 \\ 2.63 \left(\frac{1+z}{6.5}\right)^{11.2} & z > 5.5 \end{cases}$$



- Fiducial evolution match exactly the Barnett+ power-law
- Other models bracket the inferred evolution from the observations
- Test if we can reproduce the statistic of the observed transmission spikes with the simulations

### The reionization histories



- All models fit well a lot of observational constraints
- Some differences in the redshift range corresponding to the spikes region in the observed spectrum
- Testing how the statistic of spikes vary between the different model could help us to constrain the timing of reionization precisely

## **Creating mock Lyman alpha forest spectra**



- Stitch line-of-sight from different outputs to cover the observed spectrum wavelength range
- Smooth to instrumental resolution + re-bin to 10 km/s + add random Gaussian noise as in the observed spectrum
- Mock spectra resemble the observed one with transmitted spikes and long trough

## Occurrence of transmission spikes



- Early model best match the data
- Fiducial model still consistent
- Late and low/high res model inconsistent

- Changing the IGM temperature can change consequently the results
- Late model could still be consistent with the data

## Flux in spikes



- Early model best match the data
- Fiducial model still consistent
- Late and low/high res model inconsistent
- Temperature change the results

## **GP** trough lengths



- Early model best match the data
- Some of the spectra show spikes at higher redshift reducing the length of the trough
- Fiducial model still consistent
- Late low/high res models are not consistent with data
- Increasing temperature in the voids reduces the discrepancies since spikes can be detected at higher redshift

#### **Future works**

#### **Simulations**

- No QSOs radiation incorporated
- Fluctuation in the photoionization rate will complicate the picture
- Temperature fluctuations would change the results for a given reionization history
- Box size might be too small

#### **Observations**

- Now only ~20 QSOs at z>=6.5
- Only the spectrum shown here has such a high resolution enabling to find rare transmission spikes
- Re-observations of already known QSOs spectra would improve the constrain on the reionization history

### **Conclusion**

 Our models are successful at reproducing the occurrence of spikes, the integrated transmitted flux and the GP trough length as in the observed QSO spectrum

Our models suggest a somewhat early reionization history

Higher temperatures in under-dense regions favor later reionization history

 Future observation of high resolution QSO spectra could constrain the ionization state of the IGM up to z=6.1 very precisely

## Line-of-sights comparison



 Neutral hydrogen density in the three 20 cMpc/h models

Transmitted flux in under-dense regions

 Small Γ variations lead to large differences in the transmitted flux

 Spike statistic should be rather different between the models