Sakura CLAW

Relating SiII ISM transitions to Lyman-alpha in low-redshift galaxies

Hayley Finley

LARS Team

╺╋╸

MUSE Collaboration

Ly α as a probe of the CGM

 \leftrightarrow

CGM as a probe of $Ly\alpha$

How do outflows contribute to Lyα escape ?

- HI column density
- Dust
- Geometry

Fell* emission

Sill* emission

Galactic outflows in emission

Finley et al. 2017a

Fell* emission is extended

R_{1/2} is 70 % larger than for the stellar continuum, [OII] emission

$$R_{1/2, \text{Fe II*}} = 4.1 \pm 0.4 \text{ kpc}$$

 $R_{1/2, \star} \simeq 2.34 \pm 0.17$
 $R_{1/2, \text{[O II]}} = 2.76 \pm 0.17 \text{ kpc}$
 $\Sigma_{\text{SFR}} = 1.6 \text{ M}_{\odot} \text{ kpc}^{-2}$

Finley et al. 2017a

Emission signatures vary along MS

Emission signatures vary along MS

MgII escape fraction

MgII escape follows dust attenuation → Not much resonant scattering

Highest optical depth → lowest MgII fesc, like Lyα

Feltre et al. 2018, in prep.

MgII escape + Lyα escape

10 Green Peas z ~ 0.2 - 0.3 HST COS

Lyα and MgII are both resonant lines → similar impact from scattering

Does non-resonant emission (Sill*, Fell*) trace Lyα escape ?

Fitting Sill & Sill*

Sill* emission + Lyα escape

LARS 1 – 14

SiII* vs SiII in LARS 14

Sill emission + Lyα properties

Chisholm et al. 2017

Outflow Models

Scarlata & Panagia 2015

RASCAS outflow models T. Garel J. Blaizot L. Michel-Dansac A. Verhamme

Impact of – geometry – dust – velocity & density profiles on resonant absorption + non-resonant emission

Conclusions and Future Prospects

- Trace galactic outflows from FeII*, SiII*, CII*
 - Reach $z \sim 3$ with MUSE
- Combine observations and models to constrain geometry, dust content, N(HI)
- Do the physical conditions that favor detecting non-resonant emission also favor Ly α escape ?

Thank you !