Sakura CLAW

Relating SiII ISM transitions to Lyman-alpha in low-redshift galaxies

Hayley Finley

MUSE Collaboration

Lya as a probe of the CGM

\leftrightarrow
 CGM as a probe of Lya

How do outflows contribute to Lyo escape ?

- HI column density
- Dust
- Geometry

Fell* emission

Sill* emission

Galactic outflows in emission

MUSE [OII] emitter z ~ 1.29

Finley et al. 2017a

Fell* emission is extended

Surface Brightness

R_{122} is 70 \% larger than for the stellar continuum, [OII] emission

$$
\begin{aligned}
R_{1 / 2, \text { Fe II* }} & =4.1 \pm 0.4 \mathrm{kpc} \\
R_{1 / 2, \star} & \simeq 2.34 \pm 0.17 \\
R_{1 / 2, \mathrm{OIII}} & =2.76 \pm 0.17 \mathrm{kpc} \\
\Sigma_{\mathrm{SFR}} & =1.6 \mathrm{M}_{\odot} \mathrm{kpc}^{-2}
\end{aligned}
$$

Finley et al. 2017a

Emission signatures vary along MS

Emission signatures vary along MS

\square
Fe II absorption

\squareFe II abs + Fe II*

O Mg II absorption

- Mg II emission
\oplus Mg II P-Cygni
- No Mg II detected
\bullet
No signatures

MgII escape fraction

MgII escape follows dust attenuation
\rightarrow Not much resonant scattering

Highest optical depth \rightarrow lowest MgII fesc, like Lya

Feltre et al. 2018, in prep.

MgII escape + Lyo escape

Henry et al. 2018

10 Green Peas

z~0.2-0.3 HST COS

Lyd and MgII are both resonant lines
\rightarrow similar impact from scattering

Does non-resonant emission (Sill*, Fell*) trace Lyo escape ?

Fitting Sill \& Sill*

LARS

+

GPs

$+$ LAEs

Sill* emission + Lyo escape

LARS 1 - 14

SiII* vs SiII in LARS 14

LARS 14

Rivera-Thorsen et al. 2015 Henry et al. 2018

Sill emission + Lyo properties

Chisholm et al. 2017

Outflow Models

Scarlata \& Panagia 2015

RASCAS

 outflow modelsT. Garel
J. Blaizot

L. Michel-Dansac
A. Verhamme

Impact of

- geometry
- dust
- velocity \& density profiles on resonant absorption + non-resonant emission

Conclusions and Future Prospects

- Trace galactic outflows from FeiI*, SiII*, CII*
- Reach z ~ 3 with MUSE
- Combine observations and models to constrain geometry, dust content, N(HI)
- Do the physical conditions that favor detecting non-resonant emission also favor Lyd escape?

Thank you !

