ALMA observations of Lyman alpha blobs at z=3.1

Yuichi Matsuda (NAOJ)

Lyman alpha blobs (LABs)

Steidel+00

Hayes+11

Matsuda+04

- Duration time-scale~0.1Gyr (1% of Cosmic time)?
- Cosmic cherry blossoms (3 days per year 1%)?

Summary

• Lya halo is ubiquitous

• ALMA started to detect dusty sources in LABs

 One ALMA source in a filamentary LAB may be in transition phase from dusty starburst to passive galaxy

Lyman alpha halo is ubiquitous

Lya halo around the Earth

Lya halo around distant galaxies

7300

Rayleigh

Apollo 16 [Carruthers et al., 1976]

Size difference is 10¹³

50

ALMA observations of LABs

- ALMA Band 8 [CII] (Umehata+17)
 ALMA Band 7 cont + [NII] (Geach+16, Umehata+17, Ao+17, Matsuda+ in prep)
 See also Yiping Ao's poster
- ALMA Band 3 cont + CO(4-3) (Kato+ in prep)

Filamentary LAB at z=3.1 (LAB18)

ALMA deep 3mm observations 5 hrs on-source (PI: Yuta Kato)

large dust emissivity index β=2.3

 $\kappa_{\rm d}(\nu_{\rm rest}) = \kappa_{850} (\nu/\nu_{850})^{\beta}$

Short gas depletion time τ_{dep} =16Myr

 $\searrow M_{gas} = (4.4 \pm 0.3) \times 10^9 M_o (r_{41} = 0.41, \alpha = 0.8)$ $\implies SFR = 273 \pm 35 M_o / yr \qquad \tau_{dep} = M_{gas} / SFR = 16 \pm 2 Myr$

Summary

• Lya halo is ubiquitous

• ALMA started to detect dusty sources in LABs

 One ALMA source in a filamentary LAB may be in transition phase from dusty starburst to passive galaxy

