Kimm et al. (2018, MNRAS, 475, 4617)

Impact of Lyman Alpha Pressure on Metal-Poor Dwarf Galaxies

Taysun Kimm (Cambridge → Yonsei University)

in collaboration with Jeremy Blaizot (Lyon) Martin Haehnelt (Cambridge) Joki Rosdahl (Lyon) Thibault Garel (Lyon) Leo Michel-Dansac (Lyon) Harley Katz (Oxford) Romain Teyssier (Zurich)

Introduction Common feature of SFRs – Outflows

Introduction Lyman alpha profile on cloud scales

c.f. Neufeld (90;91); Zheng+(02); Verhamme et al. (06,12); Dijkstra et al. (06); Gronke & Dijkstra (15)

Radiation-Hydrodynamic simulations of a turbulent cloud with M_{cloud} =10⁶ M_{sun} , SFE=1%

recombination+collisional radiation

Kimm, Blaizot et al. (in prep)

Lya pressure Scattering of LyA photons transfers momentum to the surroundings

Multiplication factor

$$F_{Ly\alpha} = M_{\rm F} \frac{L_{Ly\alpha}}{c}$$

See also Dijkstra & Loeb (08), Smith et al. (16)

WHY DO WE CARE?

Optical depth to LyA is huge!

$$\tau_{Lya} = \left(\frac{N_{\rm HI}}{2 \times 10^{13} \ {\rm cm}^{-2}}\right) \left(\frac{T}{10^4 \ {\rm K}}\right)^{-1/2}$$

Solution to the Over-cooling problem at high z?

Kimm, Cen, Devriendt+(15)

Tokyo 30/March/2018

Lya pressure Scattering of LyA photons transfers momentum to the surroundings

See also Dijkstra & Loeb (08), Smith et al. (17)

Dust-free

Dusty

Multiplication factor

$$F_{Ly\alpha} = M_{\rm F} \frac{L_{Ly\alpha}}{c}$$

Dust-to-metal ratio: Remy-Ruyer+(14)

$\log f_{ m d/m}$	= 0	(x > 8.10),
	$= 1.25 - 2.10 \times (x_{\odot} - x)$	$(x\leq 8.10),$

 $x \equiv 12 + \log(O/H)$ and $x_{\odot} = 8.69$

Lya pressure Momentum budget from Lya pressure

Photo-ionization heating

$$n_{\rm H,ion} T_{\rm ion} = n_{\rm H,0} T_0$$

$$r_{\rm PH} \approx 26 \,\mathrm{pc} \,\left(\frac{m_{\rm star}}{10^3 \,\mathrm{M_{\odot}}}\right)^{1/3} \left(\frac{P/k_{\rm B}}{10^5 \,\mathrm{cm}^{-3} \,\mathrm{K}}\right)^{-3/2} \left(\frac{T_{\rm ion}}{10^4 \,\mathrm{K}}\right)^{2/3}$$

$$\begin{aligned} n_{\rm H} k_B T &= \frac{M_F L_{\alpha}}{4\pi r_{\alpha}^2 c} \\ r_{\alpha} &= 37 \, {\rm pc} \, \left(\frac{M_{\rm F}}{100}\right)^{1/2} \left(\frac{m_{\rm star}}{10^3 \, {\rm M}_{\odot}}\right)^{1/2} \left(\frac{P/k_{\rm B}}{10^5 \, {\rm cm}^{-3} \, {\rm K}}\right)^{-1/2} \end{aligned}$$

- The momentum from Lya is comparable or more significant than that of SNe
- Lya pressure is advantageous from a computational viewpoint as well

Lya pressure Radiation-hydrodynamic simulations of an isolated disk

Z=0.02 Z_{sun}

 $M_{star} = 2 \times 10^8 M_{sun}$ $M_{gas} = 1.7 \times 10^8 M_{sun}$

Max Resolution: 2 - 5 pc

Input physics

RAMSES-RT (Teyssier 02; Rosdahl+13)

- Thermo-turbulent star formation scheme (Kimm+17)
- Momentum-conserving SNe (Kimm & Cen 14, Kimm+15)
- **Non-equilibrium photo-chemistry with H**₂ (Katz,Kimm+17)
- **Photo-ionisation heating** (Rosdahl+13)
- Direct radiation pressure (Rosdahl+13)
- **RP by reprocessed IR photons** (Rosdahl & Teyssier 15)
- Photoelectric heating on dust (Kimm+17)
- Lya pressure (Kimm+18)

Photon group	ε ₀ [eV]	ε ₁ [eV]	$\frac{\kappa}{[\mathrm{cm}^2/\mathrm{g}]}$	Main function
EUV _{HeII}	54.42	∞	10^{3}	HeII ionisation
EUV_{HeI}	24.59	54.42	10^{3}	Hel ionisation
$EUV_{HI,2}$	15.2	24.59	10^{3}	HI and H ₂ ionisation
EUV _{HI,1}	13.6	15.2	10^{3}	HI ionisation
LW	11.2	13.6	10^{3}	H ₂ dissociation
FUV	5.6	11.2	10 ³	Photoelectric heating
Optical	1.0	5.6	10^{3}	Direct RP
IR	0.1	1.0	5	Radiation pressure (RP)

Lya pressure Radiation-hydrodynamic simulations of an isolated disk

PhotoHeating+Direct Radation Pressure +IR Pressure +SN explosions + Lya Pressure

Lya pressure Radiation-hydrodynamic simulations of an isolated disk

Lya pressure Where does Lya operate?

- Requirement for strong Lya pressure
 - Luminous ionizing source
 - Large $N_{\mbox{\scriptsize HI}}$ density
- → AROUND YOUNG STARS
- \rightarrow **INTERRUPT SF QUICKLY** (<5Myr)
- Effective $M_F \sim 200-300$ in dense regions

Lya pressure Cluster Formation with LyA Feedback

• Fewer clusters form and survive when strong radiation feedback is present (caution: cluster formation in HD simulations...)

[see also Abe & Yajima 18]

Lya pressure Star formation histories of a gas-rich, metal-poor dwarf

• Suppression of Star formation

LYA < SN < SN+LYA

Lya pressure Weaker outflows with Lya pressure

w/ Lya

WITH LYA PRESSURE

- Mass-loading factor is decreased
- Outflows become cooler and slower

A picture with strong radiation feedback

No or Weak Radiation Feedback

Strong Radiation Feedback

Coherent Supernova Feedback

Less coherent Supernova Feedback

Lya pressure Weaker outflows with Lya pressure

w/ Lya

WITH LYA PRESSURE

- Mass-loading factor is decreased
- Outflows become cooler and slower

Summary

- LyA photons resonantly scatter with HI, and impart 100-300 times more momentum than the single-scattering case (L_{Lya}/c) in the metal-poor regime
- Isolated gas-rich, metal-poor dwarf galaxy test:
 - Total stellar mass : suppressed by a factor of ~2
 - weaker outflows (mass loading~a few at 0.2 Rvir)
 - Star clusters are more difficult to form and survive -> important for GC formation
 - Strong RP does not necessarily lead to stronger outflows (due to self-regulated SF)
- (Partial) Solution to the over-cooling problem in galaxy formation simulations