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Figure 14. Lyα luminosity within r = 40 kpc that is normalized by the
one within r = 1 arcsec. These normalized Lyα luminosities are shown as
a function of EW0 defined in a r = 1-arcsec area. The grey shade repre-
sents the area that is bracketed by the two best estimate linear functions of
LLyα(40 kpc/1 arcsec) on log LLyα and log LLyα on LLyα(40 kpc/1 arcsec).
The log LLyα range of a subsample is shown as error bars in x-axes.

4.2 What is the physical origin of LAHs?

Theoretical studies suggest three physical origins of LAHs: (1) scat-
tered light of H I gas in the CGM, (2) cold streams, and (3) satellite
galaxies. These three possible origins are illustrated in Fig. 15.
In the following subsections, we discuss these possibilities with
our findings in conjunction with recent observation and simulation
results.

4.2.1 Scattered light in the CGM

The first scenario is the scattered light of H I gas in the CGM
(Fig. 15a). In this scenario, Lyα photons are produced in star-
forming regions and/or AGN, and these Lyα photons escape from
the interstellar medium (ISM) to the CGM. The Lyα escape mech-
anism is key, but poorly understood. Theoretical studies have pro-
posed various mechanisms, such as outflows, clumpy clouds, and
low column density of neutral hydrogen in the ISM NH I,ISM (e.g.
Neufeld 1991; Hansen & Oh 2006; Verhamme, Schaerer & Maselli
2006; Zheng et al. 2011; Dijkstra & Kramer 2012; Orsi, Lacey &
Baugh 2012; Duval et al. 2014). Because our study investigates nei-
ther spectra nor gas distribution of the ISM scale, no results from our
study test this scenario. Recent spectroscopic observations have re-
ported the evidence of the outflow, although the velocity is as small
as ∼200 km s−1 (e.g. Chonis 2013; Hashimoto et al. 2013; Shibuya
et al. 2014b). Scarlata (2009) has argued that their observational
results could be reproduced by the clumpy dust distribution model
of the ISM (see also Atek et al. 2009; Finkelstein et al. 2011b).
Deep optical and near-infrared spectra for gas dynamics and line
diagnostics indicate that the ISM of LAEs have a low NH I,ISM (e.g.
Chonis 2013; Hashimoto et al. 2013, 2015; Nakajima et al. 2013;
Nakajima & Ouchi 2014; Pardy et al. 2014; Shibuya et al. 2014a,b;
Song et al. 2014). So far, there are no conclusive observational tests
including our results that rule out this first scenario.

4.2.2 Cold streams

The second scenario is the cold streams (Fig. 15b). Cosmological
hydrodynamical simulations suggest that intense star formation of
the high-z galaxies (z ∼ 2) is responsible for a dense and cold gas
(∼104 K) inflows that are dubbed cold streams (e.g. Kereš et al.
2005; Dekel et al. 2009a; Dekel, Sari & Ceverino 2009b). The cold
streams radiate Lyα emission powered by gravitational energy, and
produce an extended Lyα nebula around a galaxy. Numerical sim-
ulations have indicated that a size of the cold stream Lyα nebula
depends on a dark halo mass MDH (Rosdahl & Blaizot 2012). Their
massive (MDH ≥ 1012 M⊙) and less-massive (MDH ∼ 1011 M⊙)
galaxies have large and small Lyα nebulae whose sizes are !100
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Figure 15. Illustrations of three possible origins of the LAHs: (a) scattered light in the CGM; (b) cold streams; and (c) satellite galaxies. The cyan stars
represent star-forming regions in the ISM. The red shades show ISM and CGM gas emitting or scattering Lyα that reaches the observer. The dotted circles
denote the central regions of LAEs that are detected by observations on the individual basis.
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Figure 14. Lyα luminosity within r = 40 kpc that is normalized by the
one within r = 1 arcsec. These normalized Lyα luminosities are shown as
a function of EW0 defined in a r = 1-arcsec area. The grey shade repre-
sents the area that is bracketed by the two best estimate linear functions of
LLyα(40 kpc/1 arcsec) on log LLyα and log LLyα on LLyα(40 kpc/1 arcsec).
The log LLyα range of a subsample is shown as error bars in x-axes.

4.2 What is the physical origin of LAHs?

Theoretical studies suggest three physical origins of LAHs: (1) scat-
tered light of H I gas in the CGM, (2) cold streams, and (3) satellite
galaxies. These three possible origins are illustrated in Fig. 15.
In the following subsections, we discuss these possibilities with
our findings in conjunction with recent observation and simulation
results.

4.2.1 Scattered light in the CGM

The first scenario is the scattered light of H I gas in the CGM
(Fig. 15a). In this scenario, Lyα photons are produced in star-
forming regions and/or AGN, and these Lyα photons escape from
the interstellar medium (ISM) to the CGM. The Lyα escape mech-
anism is key, but poorly understood. Theoretical studies have pro-
posed various mechanisms, such as outflows, clumpy clouds, and
low column density of neutral hydrogen in the ISM NH I,ISM (e.g.
Neufeld 1991; Hansen & Oh 2006; Verhamme, Schaerer & Maselli
2006; Zheng et al. 2011; Dijkstra & Kramer 2012; Orsi, Lacey &
Baugh 2012; Duval et al. 2014). Because our study investigates nei-
ther spectra nor gas distribution of the ISM scale, no results from our
study test this scenario. Recent spectroscopic observations have re-
ported the evidence of the outflow, although the velocity is as small
as ∼200 km s−1 (e.g. Chonis 2013; Hashimoto et al. 2013; Shibuya
et al. 2014b). Scarlata (2009) has argued that their observational
results could be reproduced by the clumpy dust distribution model
of the ISM (see also Atek et al. 2009; Finkelstein et al. 2011b).
Deep optical and near-infrared spectra for gas dynamics and line
diagnostics indicate that the ISM of LAEs have a low NH I,ISM (e.g.
Chonis 2013; Hashimoto et al. 2013, 2015; Nakajima et al. 2013;
Nakajima & Ouchi 2014; Pardy et al. 2014; Shibuya et al. 2014a,b;
Song et al. 2014). So far, there are no conclusive observational tests
including our results that rule out this first scenario.

4.2.2 Cold streams

The second scenario is the cold streams (Fig. 15b). Cosmological
hydrodynamical simulations suggest that intense star formation of
the high-z galaxies (z ∼ 2) is responsible for a dense and cold gas
(∼104 K) inflows that are dubbed cold streams (e.g. Kereš et al.
2005; Dekel et al. 2009a; Dekel, Sari & Ceverino 2009b). The cold
streams radiate Lyα emission powered by gravitational energy, and
produce an extended Lyα nebula around a galaxy. Numerical sim-
ulations have indicated that a size of the cold stream Lyα nebula
depends on a dark halo mass MDH (Rosdahl & Blaizot 2012). Their
massive (MDH ≥ 1012 M⊙) and less-massive (MDH ∼ 1011 M⊙)
galaxies have large and small Lyα nebulae whose sizes are !100
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Figure 15. Illustrations of three possible origins of the LAHs: (a) scattered light in the CGM; (b) cold streams; and (c) satellite galaxies. The cyan stars
represent star-forming regions in the ISM. The red shades show ISM and CGM gas emitting or scattering Lyα that reaches the observer. The dotted circles
denote the central regions of LAEs that are detected by observations on the individual basis.
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Figure 14. Lyα luminosity within r = 40 kpc that is normalized by the
one within r = 1 arcsec. These normalized Lyα luminosities are shown as
a function of EW0 defined in a r = 1-arcsec area. The grey shade repre-
sents the area that is bracketed by the two best estimate linear functions of
LLyα(40 kpc/1 arcsec) on log LLyα and log LLyα on LLyα(40 kpc/1 arcsec).
The log LLyα range of a subsample is shown as error bars in x-axes.

4.2 What is the physical origin of LAHs?

Theoretical studies suggest three physical origins of LAHs: (1) scat-
tered light of H I gas in the CGM, (2) cold streams, and (3) satellite
galaxies. These three possible origins are illustrated in Fig. 15.
In the following subsections, we discuss these possibilities with
our findings in conjunction with recent observation and simulation
results.

4.2.1 Scattered light in the CGM

The first scenario is the scattered light of H I gas in the CGM
(Fig. 15a). In this scenario, Lyα photons are produced in star-
forming regions and/or AGN, and these Lyα photons escape from
the interstellar medium (ISM) to the CGM. The Lyα escape mech-
anism is key, but poorly understood. Theoretical studies have pro-
posed various mechanisms, such as outflows, clumpy clouds, and
low column density of neutral hydrogen in the ISM NH I,ISM (e.g.
Neufeld 1991; Hansen & Oh 2006; Verhamme, Schaerer & Maselli
2006; Zheng et al. 2011; Dijkstra & Kramer 2012; Orsi, Lacey &
Baugh 2012; Duval et al. 2014). Because our study investigates nei-
ther spectra nor gas distribution of the ISM scale, no results from our
study test this scenario. Recent spectroscopic observations have re-
ported the evidence of the outflow, although the velocity is as small
as ∼200 km s−1 (e.g. Chonis 2013; Hashimoto et al. 2013; Shibuya
et al. 2014b). Scarlata (2009) has argued that their observational
results could be reproduced by the clumpy dust distribution model
of the ISM (see also Atek et al. 2009; Finkelstein et al. 2011b).
Deep optical and near-infrared spectra for gas dynamics and line
diagnostics indicate that the ISM of LAEs have a low NH I,ISM (e.g.
Chonis 2013; Hashimoto et al. 2013, 2015; Nakajima et al. 2013;
Nakajima & Ouchi 2014; Pardy et al. 2014; Shibuya et al. 2014a,b;
Song et al. 2014). So far, there are no conclusive observational tests
including our results that rule out this first scenario.

4.2.2 Cold streams

The second scenario is the cold streams (Fig. 15b). Cosmological
hydrodynamical simulations suggest that intense star formation of
the high-z galaxies (z ∼ 2) is responsible for a dense and cold gas
(∼104 K) inflows that are dubbed cold streams (e.g. Kereš et al.
2005; Dekel et al. 2009a; Dekel, Sari & Ceverino 2009b). The cold
streams radiate Lyα emission powered by gravitational energy, and
produce an extended Lyα nebula around a galaxy. Numerical sim-
ulations have indicated that a size of the cold stream Lyα nebula
depends on a dark halo mass MDH (Rosdahl & Blaizot 2012). Their
massive (MDH ≥ 1012 M⊙) and less-massive (MDH ∼ 1011 M⊙)
galaxies have large and small Lyα nebulae whose sizes are !100
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Figure 14. Lyα luminosity within r = 40 kpc that is normalized by the
one within r = 1 arcsec. These normalized Lyα luminosities are shown as
a function of EW0 defined in a r = 1-arcsec area. The grey shade repre-
sents the area that is bracketed by the two best estimate linear functions of
LLyα(40 kpc/1 arcsec) on log LLyα and log LLyα on LLyα(40 kpc/1 arcsec).
The log LLyα range of a subsample is shown as error bars in x-axes.

4.2 What is the physical origin of LAHs?

Theoretical studies suggest three physical origins of LAHs: (1) scat-
tered light of H I gas in the CGM, (2) cold streams, and (3) satellite
galaxies. These three possible origins are illustrated in Fig. 15.
In the following subsections, we discuss these possibilities with
our findings in conjunction with recent observation and simulation
results.

4.2.1 Scattered light in the CGM

The first scenario is the scattered light of H I gas in the CGM
(Fig. 15a). In this scenario, Lyα photons are produced in star-
forming regions and/or AGN, and these Lyα photons escape from
the interstellar medium (ISM) to the CGM. The Lyα escape mech-
anism is key, but poorly understood. Theoretical studies have pro-
posed various mechanisms, such as outflows, clumpy clouds, and
low column density of neutral hydrogen in the ISM NH I,ISM (e.g.
Neufeld 1991; Hansen & Oh 2006; Verhamme, Schaerer & Maselli
2006; Zheng et al. 2011; Dijkstra & Kramer 2012; Orsi, Lacey &
Baugh 2012; Duval et al. 2014). Because our study investigates nei-
ther spectra nor gas distribution of the ISM scale, no results from our
study test this scenario. Recent spectroscopic observations have re-
ported the evidence of the outflow, although the velocity is as small
as ∼200 km s−1 (e.g. Chonis 2013; Hashimoto et al. 2013; Shibuya
et al. 2014b). Scarlata (2009) has argued that their observational
results could be reproduced by the clumpy dust distribution model
of the ISM (see also Atek et al. 2009; Finkelstein et al. 2011b).
Deep optical and near-infrared spectra for gas dynamics and line
diagnostics indicate that the ISM of LAEs have a low NH I,ISM (e.g.
Chonis 2013; Hashimoto et al. 2013, 2015; Nakajima et al. 2013;
Nakajima & Ouchi 2014; Pardy et al. 2014; Shibuya et al. 2014a,b;
Song et al. 2014). So far, there are no conclusive observational tests
including our results that rule out this first scenario.

4.2.2 Cold streams

The second scenario is the cold streams (Fig. 15b). Cosmological
hydrodynamical simulations suggest that intense star formation of
the high-z galaxies (z ∼ 2) is responsible for a dense and cold gas
(∼104 K) inflows that are dubbed cold streams (e.g. Kereš et al.
2005; Dekel et al. 2009a; Dekel, Sari & Ceverino 2009b). The cold
streams radiate Lyα emission powered by gravitational energy, and
produce an extended Lyα nebula around a galaxy. Numerical sim-
ulations have indicated that a size of the cold stream Lyα nebula
depends on a dark halo mass MDH (Rosdahl & Blaizot 2012). Their
massive (MDH ≥ 1012 M⊙) and less-massive (MDH ∼ 1011 M⊙)
galaxies have large and small Lyα nebulae whose sizes are !100
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Figure 14. Lyα luminosity within r = 40 kpc that is normalized by the
one within r = 1 arcsec. These normalized Lyα luminosities are shown as
a function of EW0 defined in a r = 1-arcsec area. The grey shade repre-
sents the area that is bracketed by the two best estimate linear functions of
LLyα(40 kpc/1 arcsec) on log LLyα and log LLyα on LLyα(40 kpc/1 arcsec).
The log LLyα range of a subsample is shown as error bars in x-axes.

4.2 What is the physical origin of LAHs?

Theoretical studies suggest three physical origins of LAHs: (1) scat-
tered light of H I gas in the CGM, (2) cold streams, and (3) satellite
galaxies. These three possible origins are illustrated in Fig. 15.
In the following subsections, we discuss these possibilities with
our findings in conjunction with recent observation and simulation
results.

4.2.1 Scattered light in the CGM

The first scenario is the scattered light of H I gas in the CGM
(Fig. 15a). In this scenario, Lyα photons are produced in star-
forming regions and/or AGN, and these Lyα photons escape from
the interstellar medium (ISM) to the CGM. The Lyα escape mech-
anism is key, but poorly understood. Theoretical studies have pro-
posed various mechanisms, such as outflows, clumpy clouds, and
low column density of neutral hydrogen in the ISM NH I,ISM (e.g.
Neufeld 1991; Hansen & Oh 2006; Verhamme, Schaerer & Maselli
2006; Zheng et al. 2011; Dijkstra & Kramer 2012; Orsi, Lacey &
Baugh 2012; Duval et al. 2014). Because our study investigates nei-
ther spectra nor gas distribution of the ISM scale, no results from our
study test this scenario. Recent spectroscopic observations have re-
ported the evidence of the outflow, although the velocity is as small
as ∼200 km s−1 (e.g. Chonis 2013; Hashimoto et al. 2013; Shibuya
et al. 2014b). Scarlata (2009) has argued that their observational
results could be reproduced by the clumpy dust distribution model
of the ISM (see also Atek et al. 2009; Finkelstein et al. 2011b).
Deep optical and near-infrared spectra for gas dynamics and line
diagnostics indicate that the ISM of LAEs have a low NH I,ISM (e.g.
Chonis 2013; Hashimoto et al. 2013, 2015; Nakajima et al. 2013;
Nakajima & Ouchi 2014; Pardy et al. 2014; Shibuya et al. 2014a,b;
Song et al. 2014). So far, there are no conclusive observational tests
including our results that rule out this first scenario.

4.2.2 Cold streams

The second scenario is the cold streams (Fig. 15b). Cosmological
hydrodynamical simulations suggest that intense star formation of
the high-z galaxies (z ∼ 2) is responsible for a dense and cold gas
(∼104 K) inflows that are dubbed cold streams (e.g. Kereš et al.
2005; Dekel et al. 2009a; Dekel, Sari & Ceverino 2009b). The cold
streams radiate Lyα emission powered by gravitational energy, and
produce an extended Lyα nebula around a galaxy. Numerical sim-
ulations have indicated that a size of the cold stream Lyα nebula
depends on a dark halo mass MDH (Rosdahl & Blaizot 2012). Their
massive (MDH ≥ 1012 M⊙) and less-massive (MDH ∼ 1011 M⊙)
galaxies have large and small Lyα nebulae whose sizes are !100
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Figure 14. Lyα luminosity within r = 40 kpc that is normalized by the
one within r = 1 arcsec. These normalized Lyα luminosities are shown as
a function of EW0 defined in a r = 1-arcsec area. The grey shade repre-
sents the area that is bracketed by the two best estimate linear functions of
LLyα(40 kpc/1 arcsec) on log LLyα and log LLyα on LLyα(40 kpc/1 arcsec).
The log LLyα range of a subsample is shown as error bars in x-axes.

4.2 What is the physical origin of LAHs?

Theoretical studies suggest three physical origins of LAHs: (1) scat-
tered light of H I gas in the CGM, (2) cold streams, and (3) satellite
galaxies. These three possible origins are illustrated in Fig. 15.
In the following subsections, we discuss these possibilities with
our findings in conjunction with recent observation and simulation
results.

4.2.1 Scattered light in the CGM

The first scenario is the scattered light of H I gas in the CGM
(Fig. 15a). In this scenario, Lyα photons are produced in star-
forming regions and/or AGN, and these Lyα photons escape from
the interstellar medium (ISM) to the CGM. The Lyα escape mech-
anism is key, but poorly understood. Theoretical studies have pro-
posed various mechanisms, such as outflows, clumpy clouds, and
low column density of neutral hydrogen in the ISM NH I,ISM (e.g.
Neufeld 1991; Hansen & Oh 2006; Verhamme, Schaerer & Maselli
2006; Zheng et al. 2011; Dijkstra & Kramer 2012; Orsi, Lacey &
Baugh 2012; Duval et al. 2014). Because our study investigates nei-
ther spectra nor gas distribution of the ISM scale, no results from our
study test this scenario. Recent spectroscopic observations have re-
ported the evidence of the outflow, although the velocity is as small
as ∼200 km s−1 (e.g. Chonis 2013; Hashimoto et al. 2013; Shibuya
et al. 2014b). Scarlata (2009) has argued that their observational
results could be reproduced by the clumpy dust distribution model
of the ISM (see also Atek et al. 2009; Finkelstein et al. 2011b).
Deep optical and near-infrared spectra for gas dynamics and line
diagnostics indicate that the ISM of LAEs have a low NH I,ISM (e.g.
Chonis 2013; Hashimoto et al. 2013, 2015; Nakajima et al. 2013;
Nakajima & Ouchi 2014; Pardy et al. 2014; Shibuya et al. 2014a,b;
Song et al. 2014). So far, there are no conclusive observational tests
including our results that rule out this first scenario.

4.2.2 Cold streams

The second scenario is the cold streams (Fig. 15b). Cosmological
hydrodynamical simulations suggest that intense star formation of
the high-z galaxies (z ∼ 2) is responsible for a dense and cold gas
(∼104 K) inflows that are dubbed cold streams (e.g. Kereš et al.
2005; Dekel et al. 2009a; Dekel, Sari & Ceverino 2009b). The cold
streams radiate Lyα emission powered by gravitational energy, and
produce an extended Lyα nebula around a galaxy. Numerical sim-
ulations have indicated that a size of the cold stream Lyα nebula
depends on a dark halo mass MDH (Rosdahl & Blaizot 2012). Their
massive (MDH ≥ 1012 M⊙) and less-massive (MDH ∼ 1011 M⊙)
galaxies have large and small Lyα nebulae whose sizes are !100
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Figure 14. Lyα luminosity within r = 40 kpc that is normalized by the
one within r = 1 arcsec. These normalized Lyα luminosities are shown as
a function of EW0 defined in a r = 1-arcsec area. The grey shade repre-
sents the area that is bracketed by the two best estimate linear functions of
LLyα(40 kpc/1 arcsec) on log LLyα and log LLyα on LLyα(40 kpc/1 arcsec).
The log LLyα range of a subsample is shown as error bars in x-axes.

4.2 What is the physical origin of LAHs?

Theoretical studies suggest three physical origins of LAHs: (1) scat-
tered light of H I gas in the CGM, (2) cold streams, and (3) satellite
galaxies. These three possible origins are illustrated in Fig. 15.
In the following subsections, we discuss these possibilities with
our findings in conjunction with recent observation and simulation
results.

4.2.1 Scattered light in the CGM

The first scenario is the scattered light of H I gas in the CGM
(Fig. 15a). In this scenario, Lyα photons are produced in star-
forming regions and/or AGN, and these Lyα photons escape from
the interstellar medium (ISM) to the CGM. The Lyα escape mech-
anism is key, but poorly understood. Theoretical studies have pro-
posed various mechanisms, such as outflows, clumpy clouds, and
low column density of neutral hydrogen in the ISM NH I,ISM (e.g.
Neufeld 1991; Hansen & Oh 2006; Verhamme, Schaerer & Maselli
2006; Zheng et al. 2011; Dijkstra & Kramer 2012; Orsi, Lacey &
Baugh 2012; Duval et al. 2014). Because our study investigates nei-
ther spectra nor gas distribution of the ISM scale, no results from our
study test this scenario. Recent spectroscopic observations have re-
ported the evidence of the outflow, although the velocity is as small
as ∼200 km s−1 (e.g. Chonis 2013; Hashimoto et al. 2013; Shibuya
et al. 2014b). Scarlata (2009) has argued that their observational
results could be reproduced by the clumpy dust distribution model
of the ISM (see also Atek et al. 2009; Finkelstein et al. 2011b).
Deep optical and near-infrared spectra for gas dynamics and line
diagnostics indicate that the ISM of LAEs have a low NH I,ISM (e.g.
Chonis 2013; Hashimoto et al. 2013, 2015; Nakajima et al. 2013;
Nakajima & Ouchi 2014; Pardy et al. 2014; Shibuya et al. 2014a,b;
Song et al. 2014). So far, there are no conclusive observational tests
including our results that rule out this first scenario.

4.2.2 Cold streams

The second scenario is the cold streams (Fig. 15b). Cosmological
hydrodynamical simulations suggest that intense star formation of
the high-z galaxies (z ∼ 2) is responsible for a dense and cold gas
(∼104 K) inflows that are dubbed cold streams (e.g. Kereš et al.
2005; Dekel et al. 2009a; Dekel, Sari & Ceverino 2009b). The cold
streams radiate Lyα emission powered by gravitational energy, and
produce an extended Lyα nebula around a galaxy. Numerical sim-
ulations have indicated that a size of the cold stream Lyα nebula
depends on a dark halo mass MDH (Rosdahl & Blaizot 2012). Their
massive (MDH ≥ 1012 M⊙) and less-massive (MDH ∼ 1011 M⊙)
galaxies have large and small Lyα nebulae whose sizes are !100
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Results and Discussion: 
- The dominant origin of LAHs 
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Figure 14. Lyα luminosity within r = 40 kpc that is normalized by the
one within r = 1 arcsec. These normalized Lyα luminosities are shown as
a function of EW0 defined in a r = 1-arcsec area. The grey shade repre-
sents the area that is bracketed by the two best estimate linear functions of
LLyα(40 kpc/1 arcsec) on log LLyα and log LLyα on LLyα(40 kpc/1 arcsec).
The log LLyα range of a subsample is shown as error bars in x-axes.

4.2 What is the physical origin of LAHs?

Theoretical studies suggest three physical origins of LAHs: (1) scat-
tered light of H I gas in the CGM, (2) cold streams, and (3) satellite
galaxies. These three possible origins are illustrated in Fig. 15.
In the following subsections, we discuss these possibilities with
our findings in conjunction with recent observation and simulation
results.

4.2.1 Scattered light in the CGM

The first scenario is the scattered light of H I gas in the CGM
(Fig. 15a). In this scenario, Lyα photons are produced in star-
forming regions and/or AGN, and these Lyα photons escape from
the interstellar medium (ISM) to the CGM. The Lyα escape mech-
anism is key, but poorly understood. Theoretical studies have pro-
posed various mechanisms, such as outflows, clumpy clouds, and
low column density of neutral hydrogen in the ISM NH I,ISM (e.g.
Neufeld 1991; Hansen & Oh 2006; Verhamme, Schaerer & Maselli
2006; Zheng et al. 2011; Dijkstra & Kramer 2012; Orsi, Lacey &
Baugh 2012; Duval et al. 2014). Because our study investigates nei-
ther spectra nor gas distribution of the ISM scale, no results from our
study test this scenario. Recent spectroscopic observations have re-
ported the evidence of the outflow, although the velocity is as small
as ∼200 km s−1 (e.g. Chonis 2013; Hashimoto et al. 2013; Shibuya
et al. 2014b). Scarlata (2009) has argued that their observational
results could be reproduced by the clumpy dust distribution model
of the ISM (see also Atek et al. 2009; Finkelstein et al. 2011b).
Deep optical and near-infrared spectra for gas dynamics and line
diagnostics indicate that the ISM of LAEs have a low NH I,ISM (e.g.
Chonis 2013; Hashimoto et al. 2013, 2015; Nakajima et al. 2013;
Nakajima & Ouchi 2014; Pardy et al. 2014; Shibuya et al. 2014a,b;
Song et al. 2014). So far, there are no conclusive observational tests
including our results that rule out this first scenario.

4.2.2 Cold streams

The second scenario is the cold streams (Fig. 15b). Cosmological
hydrodynamical simulations suggest that intense star formation of
the high-z galaxies (z ∼ 2) is responsible for a dense and cold gas
(∼104 K) inflows that are dubbed cold streams (e.g. Kereš et al.
2005; Dekel et al. 2009a; Dekel, Sari & Ceverino 2009b). The cold
streams radiate Lyα emission powered by gravitational energy, and
produce an extended Lyα nebula around a galaxy. Numerical sim-
ulations have indicated that a size of the cold stream Lyα nebula
depends on a dark halo mass MDH (Rosdahl & Blaizot 2012). Their
massive (MDH ≥ 1012 M⊙) and less-massive (MDH ∼ 1011 M⊙)
galaxies have large and small Lyα nebulae whose sizes are !100

LAE LAE

(a) Scattered light
     in the CGM

(b) Cold streams (c) Satellite galaxies

・Stars
・ Lyα emission

LAE

Figure 15. Illustrations of three possible origins of the LAHs: (a) scattered light in the CGM; (b) cold streams; and (c) satellite galaxies. The cyan stars
represent star-forming regions in the ISM. The red shades show ISM and CGM gas emitting or scattering Lyα that reaches the observer. The dotted circles
denote the central regions of LAEs that are detected by observations on the individual basis.
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Figure 14. Lyα luminosity within r = 40 kpc that is normalized by the
one within r = 1 arcsec. These normalized Lyα luminosities are shown as
a function of EW0 defined in a r = 1-arcsec area. The grey shade repre-
sents the area that is bracketed by the two best estimate linear functions of
LLyα(40 kpc/1 arcsec) on log LLyα and log LLyα on LLyα(40 kpc/1 arcsec).
The log LLyα range of a subsample is shown as error bars in x-axes.

4.2 What is the physical origin of LAHs?

Theoretical studies suggest three physical origins of LAHs: (1) scat-
tered light of H I gas in the CGM, (2) cold streams, and (3) satellite
galaxies. These three possible origins are illustrated in Fig. 15.
In the following subsections, we discuss these possibilities with
our findings in conjunction with recent observation and simulation
results.

4.2.1 Scattered light in the CGM

The first scenario is the scattered light of H I gas in the CGM
(Fig. 15a). In this scenario, Lyα photons are produced in star-
forming regions and/or AGN, and these Lyα photons escape from
the interstellar medium (ISM) to the CGM. The Lyα escape mech-
anism is key, but poorly understood. Theoretical studies have pro-
posed various mechanisms, such as outflows, clumpy clouds, and
low column density of neutral hydrogen in the ISM NH I,ISM (e.g.
Neufeld 1991; Hansen & Oh 2006; Verhamme, Schaerer & Maselli
2006; Zheng et al. 2011; Dijkstra & Kramer 2012; Orsi, Lacey &
Baugh 2012; Duval et al. 2014). Because our study investigates nei-
ther spectra nor gas distribution of the ISM scale, no results from our
study test this scenario. Recent spectroscopic observations have re-
ported the evidence of the outflow, although the velocity is as small
as ∼200 km s−1 (e.g. Chonis 2013; Hashimoto et al. 2013; Shibuya
et al. 2014b). Scarlata (2009) has argued that their observational
results could be reproduced by the clumpy dust distribution model
of the ISM (see also Atek et al. 2009; Finkelstein et al. 2011b).
Deep optical and near-infrared spectra for gas dynamics and line
diagnostics indicate that the ISM of LAEs have a low NH I,ISM (e.g.
Chonis 2013; Hashimoto et al. 2013, 2015; Nakajima et al. 2013;
Nakajima & Ouchi 2014; Pardy et al. 2014; Shibuya et al. 2014a,b;
Song et al. 2014). So far, there are no conclusive observational tests
including our results that rule out this first scenario.

4.2.2 Cold streams

The second scenario is the cold streams (Fig. 15b). Cosmological
hydrodynamical simulations suggest that intense star formation of
the high-z galaxies (z ∼ 2) is responsible for a dense and cold gas
(∼104 K) inflows that are dubbed cold streams (e.g. Kereš et al.
2005; Dekel et al. 2009a; Dekel, Sari & Ceverino 2009b). The cold
streams radiate Lyα emission powered by gravitational energy, and
produce an extended Lyα nebula around a galaxy. Numerical sim-
ulations have indicated that a size of the cold stream Lyα nebula
depends on a dark halo mass MDH (Rosdahl & Blaizot 2012). Their
massive (MDH ≥ 1012 M⊙) and less-massive (MDH ∼ 1011 M⊙)
galaxies have large and small Lyα nebulae whose sizes are !100
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Figure 15. Illustrations of three possible origins of the LAHs: (a) scattered light in the CGM; (b) cold streams; and (c) satellite galaxies. The cyan stars
represent star-forming regions in the ISM. The red shades show ISM and CGM gas emitting or scattering Lyα that reaches the observer. The dotted circles
denote the central regions of LAEs that are detected by observations on the individual basis.
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Figure 14. Lyα luminosity within r = 40 kpc that is normalized by the
one within r = 1 arcsec. These normalized Lyα luminosities are shown as
a function of EW0 defined in a r = 1-arcsec area. The grey shade repre-
sents the area that is bracketed by the two best estimate linear functions of
LLyα(40 kpc/1 arcsec) on log LLyα and log LLyα on LLyα(40 kpc/1 arcsec).
The log LLyα range of a subsample is shown as error bars in x-axes.

4.2 What is the physical origin of LAHs?

Theoretical studies suggest three physical origins of LAHs: (1) scat-
tered light of H I gas in the CGM, (2) cold streams, and (3) satellite
galaxies. These three possible origins are illustrated in Fig. 15.
In the following subsections, we discuss these possibilities with
our findings in conjunction with recent observation and simulation
results.

4.2.1 Scattered light in the CGM

The first scenario is the scattered light of H I gas in the CGM
(Fig. 15a). In this scenario, Lyα photons are produced in star-
forming regions and/or AGN, and these Lyα photons escape from
the interstellar medium (ISM) to the CGM. The Lyα escape mech-
anism is key, but poorly understood. Theoretical studies have pro-
posed various mechanisms, such as outflows, clumpy clouds, and
low column density of neutral hydrogen in the ISM NH I,ISM (e.g.
Neufeld 1991; Hansen & Oh 2006; Verhamme, Schaerer & Maselli
2006; Zheng et al. 2011; Dijkstra & Kramer 2012; Orsi, Lacey &
Baugh 2012; Duval et al. 2014). Because our study investigates nei-
ther spectra nor gas distribution of the ISM scale, no results from our
study test this scenario. Recent spectroscopic observations have re-
ported the evidence of the outflow, although the velocity is as small
as ∼200 km s−1 (e.g. Chonis 2013; Hashimoto et al. 2013; Shibuya
et al. 2014b). Scarlata (2009) has argued that their observational
results could be reproduced by the clumpy dust distribution model
of the ISM (see also Atek et al. 2009; Finkelstein et al. 2011b).
Deep optical and near-infrared spectra for gas dynamics and line
diagnostics indicate that the ISM of LAEs have a low NH I,ISM (e.g.
Chonis 2013; Hashimoto et al. 2013, 2015; Nakajima et al. 2013;
Nakajima & Ouchi 2014; Pardy et al. 2014; Shibuya et al. 2014a,b;
Song et al. 2014). So far, there are no conclusive observational tests
including our results that rule out this first scenario.

4.2.2 Cold streams

The second scenario is the cold streams (Fig. 15b). Cosmological
hydrodynamical simulations suggest that intense star formation of
the high-z galaxies (z ∼ 2) is responsible for a dense and cold gas
(∼104 K) inflows that are dubbed cold streams (e.g. Kereš et al.
2005; Dekel et al. 2009a; Dekel, Sari & Ceverino 2009b). The cold
streams radiate Lyα emission powered by gravitational energy, and
produce an extended Lyα nebula around a galaxy. Numerical sim-
ulations have indicated that a size of the cold stream Lyα nebula
depends on a dark halo mass MDH (Rosdahl & Blaizot 2012). Their
massive (MDH ≥ 1012 M⊙) and less-massive (MDH ∼ 1011 M⊙)
galaxies have large and small Lyα nebulae whose sizes are !100
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Figure 15. Illustrations of three possible origins of the LAHs: (a) scattered light in the CGM; (b) cold streams; and (c) satellite galaxies. The cyan stars
represent star-forming regions in the ISM. The red shades show ISM and CGM gas emitting or scattering Lyα that reaches the observer. The dotted circles
denote the central regions of LAEs that are detected by observations on the individual basis.
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Summary
LAH vs M★ & Mh for ~900 NB-selected LAEs at z~2  

・stacked L(Lya)C-L(Lya)H relation is consistent with the MUSE results
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Figure 14. Lyα luminosity within r = 40 kpc that is normalized by the
one within r = 1 arcsec. These normalized Lyα luminosities are shown as
a function of EW0 defined in a r = 1-arcsec area. The grey shade repre-
sents the area that is bracketed by the two best estimate linear functions of
LLyα(40 kpc/1 arcsec) on log LLyα and log LLyα on LLyα(40 kpc/1 arcsec).
The log LLyα range of a subsample is shown as error bars in x-axes.

4.2 What is the physical origin of LAHs?

Theoretical studies suggest three physical origins of LAHs: (1) scat-
tered light of H I gas in the CGM, (2) cold streams, and (3) satellite
galaxies. These three possible origins are illustrated in Fig. 15.
In the following subsections, we discuss these possibilities with
our findings in conjunction with recent observation and simulation
results.

4.2.1 Scattered light in the CGM

The first scenario is the scattered light of H I gas in the CGM
(Fig. 15a). In this scenario, Lyα photons are produced in star-
forming regions and/or AGN, and these Lyα photons escape from
the interstellar medium (ISM) to the CGM. The Lyα escape mech-
anism is key, but poorly understood. Theoretical studies have pro-
posed various mechanisms, such as outflows, clumpy clouds, and
low column density of neutral hydrogen in the ISM NH I,ISM (e.g.
Neufeld 1991; Hansen & Oh 2006; Verhamme, Schaerer & Maselli
2006; Zheng et al. 2011; Dijkstra & Kramer 2012; Orsi, Lacey &
Baugh 2012; Duval et al. 2014). Because our study investigates nei-
ther spectra nor gas distribution of the ISM scale, no results from our
study test this scenario. Recent spectroscopic observations have re-
ported the evidence of the outflow, although the velocity is as small
as ∼200 km s−1 (e.g. Chonis 2013; Hashimoto et al. 2013; Shibuya
et al. 2014b). Scarlata (2009) has argued that their observational
results could be reproduced by the clumpy dust distribution model
of the ISM (see also Atek et al. 2009; Finkelstein et al. 2011b).
Deep optical and near-infrared spectra for gas dynamics and line
diagnostics indicate that the ISM of LAEs have a low NH I,ISM (e.g.
Chonis 2013; Hashimoto et al. 2013, 2015; Nakajima et al. 2013;
Nakajima & Ouchi 2014; Pardy et al. 2014; Shibuya et al. 2014a,b;
Song et al. 2014). So far, there are no conclusive observational tests
including our results that rule out this first scenario.

4.2.2 Cold streams

The second scenario is the cold streams (Fig. 15b). Cosmological
hydrodynamical simulations suggest that intense star formation of
the high-z galaxies (z ∼ 2) is responsible for a dense and cold gas
(∼104 K) inflows that are dubbed cold streams (e.g. Kereš et al.
2005; Dekel et al. 2009a; Dekel, Sari & Ceverino 2009b). The cold
streams radiate Lyα emission powered by gravitational energy, and
produce an extended Lyα nebula around a galaxy. Numerical sim-
ulations have indicated that a size of the cold stream Lyα nebula
depends on a dark halo mass MDH (Rosdahl & Blaizot 2012). Their
massive (MDH ≥ 1012 M⊙) and less-massive (MDH ∼ 1011 M⊙)
galaxies have large and small Lyα nebulae whose sizes are !100
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Figure 15. Illustrations of three possible origins of the LAHs: (a) scattered light in the CGM; (b) cold streams; and (c) satellite galaxies. The cyan stars
represent star-forming regions in the ISM. The red shades show ISM and CGM gas emitting or scattering Lyα that reaches the observer. The dotted circles
denote the central regions of LAEs that are detected by observations on the individual basis.
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Figure 14. Lyα luminosity within r = 40 kpc that is normalized by the
one within r = 1 arcsec. These normalized Lyα luminosities are shown as
a function of EW0 defined in a r = 1-arcsec area. The grey shade repre-
sents the area that is bracketed by the two best estimate linear functions of
LLyα(40 kpc/1 arcsec) on log LLyα and log LLyα on LLyα(40 kpc/1 arcsec).
The log LLyα range of a subsample is shown as error bars in x-axes.

4.2 What is the physical origin of LAHs?

Theoretical studies suggest three physical origins of LAHs: (1) scat-
tered light of H I gas in the CGM, (2) cold streams, and (3) satellite
galaxies. These three possible origins are illustrated in Fig. 15.
In the following subsections, we discuss these possibilities with
our findings in conjunction with recent observation and simulation
results.

4.2.1 Scattered light in the CGM

The first scenario is the scattered light of H I gas in the CGM
(Fig. 15a). In this scenario, Lyα photons are produced in star-
forming regions and/or AGN, and these Lyα photons escape from
the interstellar medium (ISM) to the CGM. The Lyα escape mech-
anism is key, but poorly understood. Theoretical studies have pro-
posed various mechanisms, such as outflows, clumpy clouds, and
low column density of neutral hydrogen in the ISM NH I,ISM (e.g.
Neufeld 1991; Hansen & Oh 2006; Verhamme, Schaerer & Maselli
2006; Zheng et al. 2011; Dijkstra & Kramer 2012; Orsi, Lacey &
Baugh 2012; Duval et al. 2014). Because our study investigates nei-
ther spectra nor gas distribution of the ISM scale, no results from our
study test this scenario. Recent spectroscopic observations have re-
ported the evidence of the outflow, although the velocity is as small
as ∼200 km s−1 (e.g. Chonis 2013; Hashimoto et al. 2013; Shibuya
et al. 2014b). Scarlata (2009) has argued that their observational
results could be reproduced by the clumpy dust distribution model
of the ISM (see also Atek et al. 2009; Finkelstein et al. 2011b).
Deep optical and near-infrared spectra for gas dynamics and line
diagnostics indicate that the ISM of LAEs have a low NH I,ISM (e.g.
Chonis 2013; Hashimoto et al. 2013, 2015; Nakajima et al. 2013;
Nakajima & Ouchi 2014; Pardy et al. 2014; Shibuya et al. 2014a,b;
Song et al. 2014). So far, there are no conclusive observational tests
including our results that rule out this first scenario.

4.2.2 Cold streams

The second scenario is the cold streams (Fig. 15b). Cosmological
hydrodynamical simulations suggest that intense star formation of
the high-z galaxies (z ∼ 2) is responsible for a dense and cold gas
(∼104 K) inflows that are dubbed cold streams (e.g. Kereš et al.
2005; Dekel et al. 2009a; Dekel, Sari & Ceverino 2009b). The cold
streams radiate Lyα emission powered by gravitational energy, and
produce an extended Lyα nebula around a galaxy. Numerical sim-
ulations have indicated that a size of the cold stream Lyα nebula
depends on a dark halo mass MDH (Rosdahl & Blaizot 2012). Their
massive (MDH ≥ 1012 M⊙) and less-massive (MDH ∼ 1011 M⊙)
galaxies have large and small Lyα nebulae whose sizes are !100

LAE LAE

(a) Scattered light
     in the CGM

(b) Cold streams (c) Satellite galaxies

・Stars
・ Lyα emission

LAE

Figure 15. Illustrations of three possible origins of the LAHs: (a) scattered light in the CGM; (b) cold streams; and (c) satellite galaxies. The cyan stars
represent star-forming regions in the ISM. The red shades show ISM and CGM gas emitting or scattering Lyα that reaches the observer. The dotted circles
denote the central regions of LAEs that are detected by observations on the individual basis.
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Figure 14. Lyα luminosity within r = 40 kpc that is normalized by the
one within r = 1 arcsec. These normalized Lyα luminosities are shown as
a function of EW0 defined in a r = 1-arcsec area. The grey shade repre-
sents the area that is bracketed by the two best estimate linear functions of
LLyα(40 kpc/1 arcsec) on log LLyα and log LLyα on LLyα(40 kpc/1 arcsec).
The log LLyα range of a subsample is shown as error bars in x-axes.

4.2 What is the physical origin of LAHs?

Theoretical studies suggest three physical origins of LAHs: (1) scat-
tered light of H I gas in the CGM, (2) cold streams, and (3) satellite
galaxies. These three possible origins are illustrated in Fig. 15.
In the following subsections, we discuss these possibilities with
our findings in conjunction with recent observation and simulation
results.

4.2.1 Scattered light in the CGM

The first scenario is the scattered light of H I gas in the CGM
(Fig. 15a). In this scenario, Lyα photons are produced in star-
forming regions and/or AGN, and these Lyα photons escape from
the interstellar medium (ISM) to the CGM. The Lyα escape mech-
anism is key, but poorly understood. Theoretical studies have pro-
posed various mechanisms, such as outflows, clumpy clouds, and
low column density of neutral hydrogen in the ISM NH I,ISM (e.g.
Neufeld 1991; Hansen & Oh 2006; Verhamme, Schaerer & Maselli
2006; Zheng et al. 2011; Dijkstra & Kramer 2012; Orsi, Lacey &
Baugh 2012; Duval et al. 2014). Because our study investigates nei-
ther spectra nor gas distribution of the ISM scale, no results from our
study test this scenario. Recent spectroscopic observations have re-
ported the evidence of the outflow, although the velocity is as small
as ∼200 km s−1 (e.g. Chonis 2013; Hashimoto et al. 2013; Shibuya
et al. 2014b). Scarlata (2009) has argued that their observational
results could be reproduced by the clumpy dust distribution model
of the ISM (see also Atek et al. 2009; Finkelstein et al. 2011b).
Deep optical and near-infrared spectra for gas dynamics and line
diagnostics indicate that the ISM of LAEs have a low NH I,ISM (e.g.
Chonis 2013; Hashimoto et al. 2013, 2015; Nakajima et al. 2013;
Nakajima & Ouchi 2014; Pardy et al. 2014; Shibuya et al. 2014a,b;
Song et al. 2014). So far, there are no conclusive observational tests
including our results that rule out this first scenario.

4.2.2 Cold streams

The second scenario is the cold streams (Fig. 15b). Cosmological
hydrodynamical simulations suggest that intense star formation of
the high-z galaxies (z ∼ 2) is responsible for a dense and cold gas
(∼104 K) inflows that are dubbed cold streams (e.g. Kereš et al.
2005; Dekel et al. 2009a; Dekel, Sari & Ceverino 2009b). The cold
streams radiate Lyα emission powered by gravitational energy, and
produce an extended Lyα nebula around a galaxy. Numerical sim-
ulations have indicated that a size of the cold stream Lyα nebula
depends on a dark halo mass MDH (Rosdahl & Blaizot 2012). Their
massive (MDH ≥ 1012 M⊙) and less-massive (MDH ∼ 1011 M⊙)
galaxies have large and small Lyα nebulae whose sizes are !100

LAE LAE

(a) Scattered light
     in the CGM

(b) Cold streams (c) Satellite galaxies

・Stars
・ Lyα emission

LAE

Figure 15. Illustrations of three possible origins of the LAHs: (a) scattered light in the CGM; (b) cold streams; and (c) satellite galaxies. The cyan stars
represent star-forming regions in the ISM. The red shades show ISM and CGM gas emitting or scattering Lyα that reaches the observer. The dotted circles
denote the central regions of LAEs that are detected by observations on the individual basis.
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     Scattered light  
     in the CGM 

✔✗✗

 LAEs have a higher fesc(Lyα) than HAEs with similar E(B-V) 
・Low HI gas mass and/or hard ionizing spectrum  

・Hα spectroscopic observation will give further information! 

・HSC (CHORUS & SILVERRUSH) enables us to derive Mh accurately!

　Dominant origin of LAHs
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Slope LAEs:0.26±0.05

Cold stream:~0.38, 0.75,  
Satellite SF:~0.40±0.13









clustering analysis & SED fitting

B, V, R, I, z, J, H, K,  IRAC ch1 & ch2 
SSP: Bruzual & Charlot 2003  
nebula: Ono+2010 
E(B-V)★ = E(B-V)g: Erb+2006  

SMC-like curve: Gordon+2003; Kusakabe+2015 
fesc(ion)=0.2: Nester+2013 
the same as those in Kusakabe+2018a 

SFR, M★, age, E(B-V)derived parameters: Mh

ACF: Landy & Szalay 1993 
γ=1.8: Ouchi+2010 
ro-Mh: Tinker+2010; Eisenstein & Hu 1998, 1999 
fitting range=40-1000”, Contami fraction=0-20% 
: Kusakabe+2018a;



Spatially extended Lyα emission
Lyα halos (LAHs)

UV Lyα

Steidel+2011


