MEGaSaURA: a spectroscopic sample of lensed starbursts at Cosmic Noon — and one particularly interesting member

T. E. Rivera-Thorsen¹ with Håkon Dahle¹, Max Grönke², Matt Bayliss³, Jane Rigby⁴, the SGAS collaboration

March 26, 2018

¹Institute of Theoretical Astrophysics, University of Oslo, Norway; ²UC Santa Barbara, California; ³MIT-Kavli, Cambridge, Massachusetts; ⁴NASA Goddard Space Flight Center, Greenbelt, Maryland

MegaSaura

Backbone: Magellan/MagE spectra

- Two selection effects: Lensing and rest-frame UV brightness
- UV Brightness makes it reasonably comparable to e.g. (e)LARS
- Ambition: Apples-to-apples comparison with (e)LARS, GPs and other local samples
- A few galaxies added to the sample after initial announcement, including the Sunburst

¹Rigby+ 2018a,b

- Backbone: Magellan/MagE spectra
- Two selection effects: Lensing and rest-frame UV brightness
- UV Brightness makes it reasonably comparable to e.g. (e)LARS
- Ambition: Apples-to-apples comparison with (e)LARS, GPs and other local samples
- A few galaxies added to the sample after initial announcement, including the Sunburst

¹Rigby+ 2018a,b

- Backbone: Magellan/MagE spectra
- Two selection effects: Lensing and rest-frame UV brightness
- UV Brightness makes it reasonably comparable to e.g. (e)LARS
- Ambition: Apples-to-apples comparison with (e)LARS, GPs and other local samples
- A few galaxies added to the sample after initial announcement, including the Sunburst

¹Rigby+ 2018a,b

- Backbone: Magellan/MagE spectra
- Two selection effects: Lensing and rest-frame UV brightness
- UV Brightness makes it reasonably comparable to e.g. (e)LARS
- Ambition: Apples-to-apples comparison with (e)LARS, GPs and other local samples
- A few galaxies added to the sample after initial announcement, including the Sunburst

- Backbone: Magellan/MagE spectra
- Two selection effects: Lensing and rest-frame UV brightness
- UV Brightness makes it reasonably comparable to e.g. (e)LARS
- Ambition: Apples-to-apples comparison with (e)LARS, GPs and other local samples
- A few galaxies added to the sample after initial announcement, including the Sunburst

PRELIMINARY ANALYSIS: KINEMATICS

Example kinematic measurements: SGAS J09000+2234

PRELIMINARY ANALYSIS: APPARENT OPTICAL DEPTH

Example AOD fitting: SGAS J09000+2234

Initial results of Megasaura and (e)LARS

The "Sunburst Arc" PSZ1-ARC G311.6602-18.4624

- ${\ensuremath{\,\cdot\,}} \sim$ 1.3 Mag brighter than the nearest competitor
- Extends over 55" on the sky
- Likely to also intrinsically be very bright
- Preliminary lens models suggest an extremely fortunate alignment between lens and galaxy

- \sim 1.3 Mag brighter than the nearest competitor
- Extends over 55" on the sky
- Likely to also intrinsically be very bright
- Preliminary lens models suggest an extremely fortunate alignment between lens and galaxy

- \sim 1.3 Mag brighter than the nearest competitor
- Extends over 55" on the sky
- Likely to also intrinsically be very bright
- Preliminary lens models suggest an extremely fortunate alignment between lens and galaxy

- \sim 1.3 Mag brighter than the nearest competitor
- Extends over 55" on the sky
- Likely to also intrinsically be very bright
- Preliminary lens models suggest an extremely fortunate alignment between lens and galaxy

Discovery imaging with NTT

Data from Dahle+ 2016

Recent observations with HST

THE GALAXY-LENS ALIGNMENT IS BONKERS

...at least according to preliminary models.

Image: Keren Sharon, UMich

WE ACQUIRED SPECTRA WITH MAGELLAN-FIRE AND MAGE

SIMILAR TO A LOCAL-UNIVERSE GREEN PEA

The big "Wow!": Textbook triple-peak Lylpha

Simulated profile (Behrens+ 2014)

Dahle+ 2017 (HST Midcycle proposal)

The big "Wow!": Textbook triple-peak Lylpha

Simulated profile (Behrens+ 2014)

 ${\rm Ly}\alpha$ RT fits, with and without central peak

(Rivera-Thorsen+ 2017b)

Dahle+ 2017 (HST Midcycle proposal)

NEUTRAL ISM IS EXTREMELY TENUOUS AT LEAST IN A CHANNEL

Image: Rivera-Thorsen+ 2017

Various LyC escape scenarios revealed in Lylpha profile

Figure: M. Grönke (Rivera-Thorsen+ 2017)

• What are we actually looking at?

- Lens model is under development.
- Is it leaking ionizing radiation?
 HST data scheduled for ultimo Apr
- $m\cdot$ What does it look like in Lylpha?
 - HST narrowband observations scheduled during current cycle
- We still don't understand the radiative transfer.
 better modeling makes it *harder* to reproduce observed Lyα and LyC.

- What are we actually looking at?
 - Lens model is under development.
- Is it leaking ionizing radiation?
 - HST data scheduled for ultimo April
- $m\cdot$ What does it look like in Lylpha?
 - HST narrowband observations scheduled during current cycle
- We still don't understand the radiative transfer.
 better modeling makes it *harder* to reproduce observed Lyα and LyC.

- What are we actually looking at?
 - Lens model is under development.
- Is it leaking ionizing radiation?
 - HST data scheduled for ultimo April
- What does it look like in Lylpha?
 - HST narrowband observations scheduled during current cycle
- We still don't understand the radiative transfer.
 better modeling makes it *harder* to reproduce observed Lyα and LyC.

- What are we actually looking at?
 - Lens model is under development.
- Is it leaking ionizing radiation?
 - HST data scheduled for ultimo April
- What does it look like in Lylpha?
 - HST narrowband observations scheduled during current cycle
- We still don't understand the radiative transfer.
 - better modeling makes it harder to reproduce observed $\mathrm{Ly}\alpha$ and $\mathrm{LyC}.$

UiO **Institute of Theoretical Astrophysics** University of Oslo