Tokyo Spring Cosmic Lyman-Alpha Workshop@Tokyo University March 26-30, 2018

Formation of Lya emitting galaxies in overdense regions at the epoch of reionization

Hidenobu YAJIMA

(Tohoku University, Japan)

Collaborators: Ken Nagamine, Shohei Arata, Qirong Zhu, Sadegh Khochfar, Claudio Dalla Vecchia, Yuexing Li

Various populations in high-z galaxies

What caused the diversity? How did the radiation property change with galaxy evolution?

Methodology and Basic physics

Cosmological hydrodynamics simulations

Radiation transfer calculations

Previous works (Cosmological hydro. + Lya radiative transfer)

Pioneering works

Dust, Multi-band, Milky Wayprogenitors

Lya radiation feedback

Model&Setup

Cosmological zoom-in simulations with Gadget-3

a) <u>Halo-11 run</u> $2x10^{11}$ M_{sun} at z=6

b) <u>Halo-12 run</u> $1x10^{12}$ M_{sun} at z=6

 m_{gas} =1.2 x10⁴ M_{sun} (1.8x10⁵) m_{DM}=6.6x10⁴ M_{sun} (1.1x10⁶) Softening=200 pc(comoving)

Supernova feedback

(Dalla Vecchia & Schaye 2012)

Thermal energy is deposited into neighbor SPH particles stochastically

Sound crossing time v. s. Cooling time

Critical density

T_{hot}=10^7.5 K E=N_{SN} x 10^51 erg

$$n_{\rm H} \sim 100 \ {\rm cm}^{-3} \left(\frac{T}{10^{7.5} \ {\rm K}}\right) \left(\frac{m_{\rm g}}{10^4 \ {\rm M}_{\odot}}\right)^{-1/2}$$

3D Radiative Transfer code: ART²

*All-wavelength Radiative Transfer with Adaptive Refinement Tree (ART²) (Li+2008; HY+ 2012, MNRAS, 424, 884)

- •Monte Carlo method
- Adaptive refinement grid structure
- Lyman-alpha line
- LyC and Ionization of hydrogen
- •Continuum from X-ray to radio
- Dust absorption/emission
- •Two-phase ISM model in a cell

Parallelized

Results

Star formation history
 Lya properties
 Case of Massive halos
 UV/Sub-mm properties
 Dust temperature
 (HY+2017, ApJ, 80, 30)
 (HY, Arata+, in prep.)

Gas structure in galaxies (HY+2017, ApJ, 86, 30)

With Feedback

Without Feedback

Formation of first galactic disks

Star formation history

(HY+2017, ApJ, 86, 30)

Consideration by the thin-shell approximation

Lya luminosity

Lya escape fraction

Escape of UV, Lya, LyC photons

Optical depth

Lya line profiles

Sub-mm flux

Dust temperature

Summary

We study radiation properties of first galaxies by combining cosmological simulations and multiwavelength radiation transfer calculations

- 1) Star formation proceeds intermittently in low-mass halos with Mh < 10¹⁰M_{sun}
- 2) Massive halos become bright (~10⁴³erg/s) and extended(~30kpc) Lya sources at z~6
- 3) UV/Lya escape efficiently in outflow phases (f_{esc}>10%) due to supernova feedback
 4) Galaxies show the cycles between UV and IR
 - bright phases