
Kenji Hasegawa (Nagoya U.) 

Kenji Kubota (Kumamoto U.) 
Shintaro Yoshimura (Kumamoto U.) 
Akio K. Inoue (Osaka Sangyo U.) 

and others

Sakura CLAW @ The Univ. of Tokyo, 26-30th March, 2018

ATERUI@NAOJ CfCA

based on  
KH et al., 2016, arXiv: 1603.01961 
Kubota, KH, et al., 2018, arXiv: 1708.06291 
Yoshiura, KH, et al., 2018 arXiv: 1709.04168 
Inoue, KH et al. 2018, arXiv: 1801.00067 

Detectability of 21cm-signal during  
the Epoch of Reionization with  

21cm-LAE cross-correlation



first stars

First Star  
Formation 
z~10-30

Recombination 
z~1100

Da
rk

 A
ge

s

(First) galaxies 
& AGN 

formation? 
z<10

•  HI 21cm line : tracer of neutral hydrogen during the Epoch of 
Reionization (EoR) 

  => Provides us with fruitful information on the reionization 
process 
• Difficulty: Intense foreground emission ~K >> EoR signal ~mK

IGM is 
almost ionized. 

z~f6

Io
ni
ze

d 
Un

ive
rs

e

CMB photons



21cm-LAE cross correlation

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  20  40  60  80  100 120 140 160

◎Why cross correlation?

21cm-galaxy cross-correlation

21cm-galaxy cross-power spectrum 3

Figure 2. Redshift evolution of the cross-power spectrum and cross-correlation function between 21cm fluctuations and the galaxies
which have the UV magnitude less than -18 in the model. Left panel: the absolute value of the cross-power spectrum (top) and cross-
correlation coefficient (bottom). Right panel: The corresponding cross-correlation function. In each panel, dotted (red), dash-three dotted
(orange), dashed (yellow), dash-dotted (green), long-dashed (blue), and solid (purple) lines represent results from at z (⟨xi⟩) = 9.278
(0.056), 8.550 (0.16), 7.883 (0.36), 7.272 (0.55), 6.712 (0.75), and 6.197(0.95), respectively.

the number of photons produced by galaxies in each cell that
enter the IGM and participate in reionization to be

Nγ,cell = f esc

∫ tz

0

ṄLyc,cell(t) dt, (1)

where fesc is the escape fraction of ionizing photons pro-
duced by galaxies. Here ṄLyc,cell(t) is the total Lyman con-
tinuum luminosity of the Ncell galaxies within the cell ex-
pressed as the emission rate of ionizing photons (i.e. units
of photons/s).

The ionization fraction within each cell is calculated as

Qcell =

[

Nγ,cell

(1 + Fc)NHI,cell

]

, (2)

where Fc denotes the mean number of recombinations per
hydrogen atom and NHI,cell is the number of neutral hy-
drogen atoms within a cell. We assume that the overden-
sity of neutral hydrogen follows the dark matter and self-
reionization of a cell occurs when Qcell ! 1. It is compli-
cated to theoretically predict the values of Fc and fesc, and
the values are not known. In this paper, we use the values of
(1+Fc)/fesc in table 2 of Kim et al. (2013). These parame-
ters provide a reionization history with a mass-averaged ion-
ization fraction of ⟨xi⟩ = 0.55 at z = 7.272 and ⟨xi⟩ = 0.75
at z = 6.712. We divide the Millennium-II simulation box
into 2563 cells, yielding cell side lengths of 0.3906h−1Mpc
and comoving volumes of 0.0596h−3Mpc3.

Based on equation (2), individual cells can have Qcell !
1. On the other hand, cells with Qcell < 1 may be ionized by
photons produced in a neighbouring cell. In order to find the
extent of ionized regions we therefore filter the Qcell field us-
ing a sequence of real space top hat filters of radius R (with
0.3906 < R < 100h−1Mpc), producing one smoothed ion-

ization field QR per radius. At each point in the simulation
box we find the largest R for which the filtered ionization
field is greater than unity (i.e. ionized with QR ! 1). All
points within the radius R around this point are considered
ionized. Ionization cells with 0 < Qcell < 1 which are not
part of an ionized QR ! 1 region retain their values.

3.2 The cross-power spectrum

The 21cm brightness temperature contrast may be written
as

δ̃21(r) = T0(z)[1−Q(r)](1 + δDM,cell), (3)

where T0(z) = 23.8
(

Ωbh
2

0.021

) [(

0.15
Ωmh2

)

(

1+z
10

)

] 1

2

mK

(Zaldarriaga et al. 2004). For convenience, we define
δ21(r) ≡ δ̃21(r)/T0(z), so that δ21(r) is a dimensionless
quantity. Galaxy overdensity is given by

δgal(r) =
ρgal(r)− ρ̄gal

ρ̄gal
, (4)

where ρgal(r) is a galaxy density field and ρ̄gal is mean den-
sity. Defining δ̂21(k) to be the Fourier transform of δ21(k),
the cross-power spectrum is given by

〈

δ̂21(k1)δ̂gal(k2)
〉

≡ (2π)3δD(k1 + k2)P21,gal(k1), (5)

where δD(k) is the Dirac delta function. The dimensionless
cross-power spectrum is

∆2
21,gal(k) =

k3

(2π2)
P21,gal(k). (6)
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We perform both 21cm observation and galaxy survey. 
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• Estimate the detectability of 21cm - LAE cross power spectrum(CPS).  
• Modeling reionization process and LAEs. 

Map of HI 21cm signal Distribution of LAEs



Reionization Simulation

1) High resolution cosmological Radiation Hydrodynamics (RHD) 
simulation (radiative transfer is consistently coupled with 
hydrodynamics) in a (20Mpc)3 box. (e.g., KH & Semelin, 2013, KH et al. 2016)

Two-Step Approach: 

• Properties of galaxies (e.g., intrinsic ionizing photon emissivity, 
Lyα Luminosity, escape fraction of ionizing photons as a function 
of halo mass).  

• Small-scale clumping factor in the IGM

• Representative reionization history 
• Spatial Distributions of HI.  

2) Large-scale Radiative Transfer simulation (160Mpc) with the models 
of galaxies and clumping factor. (e.g., Kubota et al. 2018, Yoshimura et al. 2018)



40963 particles for N-body 
(Mh,min=2.5×107Msun) 

2563 grids for RT 
(dx=0.6Mpc)



Comparison : Simulations vs Observations
Constraint by QSO spectra Thomson Opt. Depth

Fan et al. 2006

• Our simulation well reproduces the observations.  
• ~factor 2 uncertainty in the ionizing photon emissivity is allowed to 

reproduce the observations.  

Planck et al. 2016

Fiducial
Emissivity×1.5

Emissivity/1.5

What about LAEs?
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and described as

ki
γ =

∑

j

xi

4πR2
j

∫ ∞

νi

Lν,j

hν
σi(ν)e

−τν,jdν, (14)

where σi(ν) is the cross section for i-th species, νi is the Ly-
man limit frequency of i-th species. The subscript j indicates
the index of an ionizing source, Rj and τν,j are respectively
the distance and the optical depth from j-th ionizing source.
The SED of j-th ionizing source is determined by referring
to the look-up table of SED. Thermal evolution at each po-
sition obeys the following equation;

dTg

dt
= (γ−1)

µmp

kBρ

(
kBTg

µmp

dρ
dt

+ Γ− Λ

)
−µTg

d
dt

(
1
µ

)
, (15)

where γ, mp, µ, ρ, and kB are the adiabatic index, the pro-
ton mass, mean molecular weight, gas mass density, and the
Boltzmann constant, respectively. The H i, He i, and He ii
photo-ionization processes contribute to the heating rate Γ.
Each contribution is written as

Γi,γ =
∑

j

ni

4πR2
j

∫ ∞

νi

Lν,j

hν
(hν − hνi)σi(ν)e

−τν,jdν. (16)

During the post-processing radiative transfer calculation,
Lν,j and C(x) are estimated from the look-up tables, re-
ferring to the halo mass, the local IGM density, and the
local ionization degree.

Other than the fiducial model, we perform two addi-
tional reionization simulations with different ionizing pho-
ton production rate models. The ionizing photon produc-
tion rates in the additional two runs are set to be 1.5 times
higher or lower than that in the fiducial model. We refer
to these three models as the late, mid, and early reioniza-
tion models, respectively. These ionizing-source models well
reproduce neutral hydrogen fraction at z ∼ 6 indicated by
QSO spectra and the Thomson scattering optical depth for
the CMB photons, simultaneously. Fig. 1 shows the evolu-
tion of mean neutral hydrogen fraction of the three simula-
tions. The optical depths are 0.0552, 0.0591, 0.0648 for the
late, mid, and early models, respectively, while the Planck
observation gives 0.066 ± 0.016(Planck Collaboration et al.
2015).

We finally evaluate the differential brightness temper-
ature δTb from Eq. (1), assuming that the spin tempera-
ture TS is fully coupled with the gas temperature Tg. We
note that this assumption is valid as far as we focus on the
later stage of the EoR (Baek et al. 2009). The map of δTb

at z = 6.6 in the mid model is shown in the top panel of
Fig. 2.

3.2 Galaxy (LAE) model

The mock LAE samples are obtained via two steps. Firstly,
we determine the Lyα luminosity of each galaxy. Next, we
evaluate the Lyα transmission rate through the simulated
IGM for each galaxy by integrating Lyα optical depth along
a given direction. Since the ionization structure in each
galaxy is calculated in the RHD simulation described in the
previous subsection, we can estimate the intrinsic Lyα lu-
minosity of each galaxy from the RHD simulation results.
In galaxies, Lyα photons are mainly produced via the re-
combination process and the collisional excitation process
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Figure 1. Evolution of the mean neutral hydrogen fraction fHI

in our reionization simulation box as a function of redshift. The
green, red, blue lines show the evolution in the early, mid, and
late model, respectively.

(Yajima et al. 2012). By counting the number of Lyα pho-
tons produced by these two processes, we found that the in-
trinsic Lyα luminosity Lα,int of each galaxy with halo mass
being greater than 1010M⊙ is roughly expressed as

Lα,int ≈ 1042
( Mh

1010M⊙

)1.1
[erg/s], (17)

where Mh is the halo mass. We note that the dependence
on the halo mass is almost identical to that for the star
formation rate in the RHD simulation. It is usually expected
that the intrinsic Lyα photons are absorbed by interstellar
dust during the numerous scattering events. In this paper,
we treat the fraction of Lyα photons escaping from a galaxy,
fesc,α, as a free parameter, because the absorption of Lyα
photons by dust grains is not taken into account in the RHD
simulation.

The Lyα flux is further attenuated by neutral hydrogen
in the IGM before we can observe. It is essential to deter-
mine the Lyα line profile emerging from the surface of a
galaxy for evaluating the fraction of the Lyα flux transmit-
ted through the IGM, because the Lyα transmission rate is
sensitive to the line profile. In this work, we use the line
profiles obtained by solving Lyα radiative transfer with an
expanding spherical cloud model in which the radial velocity

is assumed to obey v(r) = Vout

(
r

rvir

)
, where rvir and Vout

are the virial radius of a halo and the galactic wind velocity
(Yajima et al. 2017). The line profile is controlled by two
parameters; the galactic wind velocity Vout and the H i col-
umn density in a galaxy NH i. In the expanding cloud model,
photons with short wavelengths are selectively scattered by
outflowing gas. As a result, an asymmetric profile with a re-
markable peak at a wavelength longer than 1216 Å emerges
from the surface of a galaxy.

Using the obtained line profile φα(ν), the Lyα transmis-

MNRAS 000, 1–14 (2017)

From RHD simulation

Distribution of Observable Lyα Emitting Galaxies
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Lν,j and C(x) are estimated from the look-up tables, re-
ferring to the halo mass, the local IGM density, and the
local ionization degree.

Other than the fiducial model, we perform two addi-
tional reionization simulations with different ionizing pho-
ton production rate models. The ionizing photon produc-
tion rates in the additional two runs are set to be 1.5 times
higher or lower than that in the fiducial model. We refer
to these three models as the late, mid, and early reioniza-
tion models, respectively. These ionizing-source models well
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the CMB photons, simultaneously. Fig. 1 shows the evolu-
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tions. The optical depths are 0.0552, 0.0591, 0.0648 for the
late, mid, and early models, respectively, while the Planck
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2015).

We finally evaluate the differential brightness temper-
ature δTb from Eq. (1), assuming that the spin tempera-
ture TS is fully coupled with the gas temperature Tg. We
note that this assumption is valid as far as we focus on the
later stage of the EoR (Baek et al. 2009). The map of δTb

at z = 6.6 in the mid model is shown in the top panel of
Fig. 2.

3.2 Galaxy (LAE) model

The mock LAE samples are obtained via two steps. Firstly,
we determine the Lyα luminosity of each galaxy. Next, we
evaluate the Lyα transmission rate through the simulated
IGM for each galaxy by integrating Lyα optical depth along
a given direction. Since the ionization structure in each
galaxy is calculated in the RHD simulation described in the
previous subsection, we can estimate the intrinsic Lyα lu-
minosity of each galaxy from the RHD simulation results.
In galaxies, Lyα photons are mainly produced via the re-
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Figure 1. Evolution of the mean neutral hydrogen fraction fHI

in our reionization simulation box as a function of redshift. The
green, red, blue lines show the evolution in the early, mid, and
late model, respectively.

(Yajima et al. 2012). By counting the number of Lyα pho-
tons produced by these two processes, we found that the in-
trinsic Lyα luminosity Lα,int of each galaxy with halo mass
being greater than 1010M⊙ is roughly expressed as

Lα,int ≈ 1042
( Mh

1010M⊙

)1.1
[erg/s], (17)

where Mh is the halo mass. We note that the dependence
on the halo mass is almost identical to that for the star
formation rate in the RHD simulation. It is usually expected
that the intrinsic Lyα photons are absorbed by interstellar
dust during the numerous scattering events. In this paper,
we treat the fraction of Lyα photons escaping from a galaxy,
fesc,α, as a free parameter, because the absorption of Lyα
photons by dust grains is not taken into account in the RHD
simulation.

The Lyα flux is further attenuated by neutral hydrogen
in the IGM before we can observe. It is essential to deter-
mine the Lyα line profile emerging from the surface of a
galaxy for evaluating the fraction of the Lyα flux transmit-
ted through the IGM, because the Lyα transmission rate is
sensitive to the line profile. In this work, we use the line
profiles obtained by solving Lyα radiative transfer with an
expanding spherical cloud model in which the radial velocity

is assumed to obey v(r) = Vout

(
r

rvir

)
, where rvir and Vout

are the virial radius of a halo and the galactic wind velocity
(Yajima et al. 2017). The line profile is controlled by two
parameters; the galactic wind velocity Vout and the H i col-
umn density in a galaxy NH i. In the expanding cloud model,
photons with short wavelengths are selectively scattered by
outflowing gas. As a result, an asymmetric profile with a re-
markable peak at a wavelength longer than 1216 Å emerges
from the surface of a galaxy.

Using the obtained line profile φα(ν), the Lyα transmis-
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Figure 2. Top: the 21cm brightness temperature in mid model
at redshift z = 6.6. In fully ionized region δTb ∼ 0mK. Bottom:
the associated LAE distribution. The panels are maps integrated
within ∆z = 0.1 ∼ 40Mpc.

sion rate Tα,IGM is calculated as

Tα,IGM =

∫
φα(ν0) e

−τν0,IGMdν0∫
φα(ν0)dν0

, (18)

where ν0 is the frequency in the rest-frame of a galaxy, τν,IGM

is the optical depth through the IGM described as

τν0,IGM =

∫ lp,max

rvir

sα(ν, Tg)nH idlp, (19)

where sα is the Lyα cross section of neutral hydrogen. Note
that the frequency in the rest frame of the expanding gas,
ν, is given by

ν = ν0

(
1− H(z)lp

c

)
, (20)

where lp is the distance from an LAE candidate in the phys-
ical coordinate. The upper bound of the integration, lp,max,
is set to be 80 comoving Mpc. The Lyα transmission rate
Tα,IGM tends to be higher as the outflow velocity Vout or
the H i column density NH i increases, because the remark-

Table 1. Parameter sets we chose in our LAE model at redshift
z = 6.6 and 7.3. We choose NH i = 1019 cm−2 at redshift z = 6.6
and 1020 cm−2 at redshift z = 7.3. The LAE models in the early,
mid, late model are set by adjusting fesc,α.

z model fesc,α Vout[km/s] NH i[cm−2]

early 0.22 150 1019

6.6 mid 0.25 150 1019

late 0.45 150 1019

early 0.16 150 1020

7.3 mid 0.30 150 1020

late 0.37 150 1020

able peak shifts towards redder wavelengths (Yajima et al.
2017).

In summary, observable Lyα luminosity is given by

Lα,obs = fesc,αTα,IGMLα,int. (21)

As described above, the transmission rate Tα,IGM implic-
itly depends on Vout and NH i. Thus, the observable Lyα
luminosity is determined not only by the neutral hydro-
gen distribution in the IGM, but also three parameters, i.e.,
fesc,α, Vout and NH i. In this work, we set the parameters
to be 0.16 ≤ fesc,α ≤ 0.45, Vout = 150km/s, NH i = 1019 or
1020cm−2 so that simulated Lyα luminosity functions match
to the observed LFs. The parameters we set are summarized
in Table1. Fig.3 shows the comparison between the simu-
lated Lyα luminosity functions with the chosen parameters
and observed LFs at redshifts z = 6.6(Konno et al. 2017)
and z = 7.3(Konno et al. 2014).

The bottom panel of Fig. 2 shows the distribution of
observable LAEs (Lα,obs > 1042erg/s) in the mid model
at z = 6.6. The comparison between the 21cm and LAE
maps indicates that LAEs clearly reside in the ionized re-
gion (δTb ∼ 0mK) and the 21cm brightness temperature is
high in the no LAEs region. This anti-correlation was seen
in the previous works.

4 DETECTABILITY

In this section, we describe how to estimate the error on
the cross-power spectrum. We calculate the error accord-
ing to Lidz et al. (2009); Furlanetto & Lidz (2007). As to
observation facilities, we consider combining the 21cm-line
observation by the MWA and SKA with the LAE survey by
Subaru HSC and follow-up observations by PFS.

4.1 Statistical error

First of all, we account for enhancement of the power
spectrum by redshift space distortion as P (k, µ) = (1 +
βµ2)2P (k), where µ is the cosine of the angle between k and
the line-of-sight. β = Ω0.6

m (z)/b and b is a bias factor(Kaiser
1987). The bias factor is given by b2gal(k) = Pgal(k)/PDM(k)
and we here compute this as b2gal(k) = Pgal(k)/Pdensity(k) as-
suming Pdensity(k) ≈ PDM(k), where PDM(k) and Pdensity(k)

MNRAS 000, 1–14 (2017)

Lyα escape fraction : Parameter

Ray-tracing through the IGM  
(Yajima, Sugimura, KH+, 2018)

Distribution of Observable Lyα Emitting Galaxies



Collaboration with a Subaru HSC project (SILVERRUSH) 
Inoue, KH, et al. 2018 
• To reproduce observed Angular Correlation Function and 

Luminosity function, Mhalo-dependent escape fraction 
(  <τ> ∝Mhalo1/3) with a large scatter is favored.   

• Lyα RT simulations (e.g., Yajima et al. 2014) show the 
similar trend. 

Modelling Lyα Emitting Galaxies

ACF (Obs data (red circles) from Ouchi et al. 2018)

Transparrent IGM

NHI = 1020cm-2

Lyα LF



 redshift error =0.0007 w/ PFS   
                       =0.1 w/o PFS

SKA 
FoV: ~25 [deg2] 
670 antennae within 1000m 
1000hrs observing time 

HSC  
Deep:  

Total survey Area : 27 [deg2] ~ 0.5 
h-3Gpc3, Limiting Luminosity : 4.1×1042 
erg/s @z=6.6, 

HI 21cm signal estimated from our simulation

Preparation for estimating the detectability of the CPS



Errors on the cross-power spectrum
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Figure 3. Simulated Lyα luminosity function and observed LF
at redshift z = 6.6 (top) and z = 7.3 (bottom). The green, red,
and blue solid lines show the simulated LFs in the early, mid,
late model, respectively. In the top panel, the arrows represent
the detectable luminosity range in Ultra-deep, Deep field, and
the case of 3 × tsur in Deep field of HSC LAE surveys.

Without systematic errors, the error on a measurement
of the 21cm power spectrum for a particular mode (k, µ) is
given by (McQuinn et al. 2006)

δP21(k, µ) = P21(k, µ) +
T2

sys

Btint

D2∆D
n(k⊥)

( λ2

Ae

)2
, (22)

where Tsys is the system temperature which is estimated

as ∼ 280[(1 + z)/7.5]2.3 K. B and tint are the survey band-
pass and the integration time for 21cm observation, re-
spectively. D is the comoving distance to the 21cm sur-
vey volume and the comoving survey width ∆D is given by

∆D = 1.7( B
0.1MHz )( 1+z

10 )1/2(Ωmh2

0.15 )−1/2. n(k⊥) is the number
density of baselines in observing the perpendicular compo-
nent of the wave vector, k⊥ = (1 − µ2)1/2k. We assume that
it is decreased continuously as r−2. Ae is the effective area
of each antenna tile and λ is the observed 21cm wavelength.
The first and second terms represent sample variance and
thermal noise, respectively.

Similarly, the error on a galaxy survey for a particular
mode is given by (Feldman et al. 1994; Tegmark 1997)

δPgal(k, µ) = Pgal(k, µ) + n−1
gal exp(k2

∥σ
2
r ), (23)

where ngal is the mean number density in the galaxy survey.
Its inverse approximately is regarded as shot noise; k ∥ is the
parallel component of wave number, k ∥ = µk. σr = cσz/H (z)
where σz is the redshift error in the galaxy survey. Here
the first term is sample variance and the second term is a
product of shot noise and redshift errors.

With the errors on the 21cm observation and the galaxy
survey, the error on the cross-power spectrum for a particu-
lar mode is give by

2[δP2
21,gal(k, µ)] = P2

21,gal(k, µ) + δP21(k, µ)δPgal (k, µ). (24)

The first term represents sample variance on the cross-power
spectrum and the second term is a product of Eqs. (22)
and (23). We then compute the error on the cross-power
spectrum by summing the errors for each k-modes in inverse
form. The errors on the spherically averaged cross-power
spectrum are,

1
δP2

21,gal(k)
=

∑

µ

∆µ
ϵk3Vsur

4π2
1

δP2
21,gal(k, µ)

, (25)

where ϵ = ∆k/k is the logarithmic width of the spherical
shell, and Vsur is the effective survey volume for 21cm ra-
dio telescope which is given by Vsur = D2∆D(λ2/Ae ). If the
galaxy survey has a smaller volume than 21cm-line survey,
we set Vsur = Vgal.

We then calculate the total signal-to-noise (S/N) ratio
which is summation of the S/N in each k bin,

(S/N )2
total =

Nbin∑

i

( ∆k
ϵki

)
(S/N )2

i , (26)

where Nbin and ∆k are the number of bins and the bin size,
respectively.

Later, we will investigate the error budget of cross-
correlation measurements, so let us represent Eq. (24) more
simply. We denote the thermal noise in Eq. (22) as σN, the
shot noise in Eq. (23) as σg and the error on the cross-power
spectrum as σA. Then, Eq. (24) can be rewritten as

σA(k) ∝
√

P2
21,gal + P21Pgal + P21σg + σNPgal + σNσg. (27)

Each term in Eq. (27) represents a component of the error
on the cross-power spectrum. The error is determined by the
5 terms. We will compare these terms later.
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Figure 3. Simulated Lyα luminosity function and observed LF
at redshift z = 6.6 (top) and z = 7.3 (bottom). The green, red,
and blue solid lines show the simulated LFs in the early, mid,
late model, respectively. In the top panel, the arrows represent
the detectable luminosity range in Ultra-deep, Deep field, and
the case of 3 × tsur in Deep field of HSC LAE surveys.

Without systematic errors, the error on a measurement
of the 21cm power spectrum for a particular mode (k, µ) is
given by (McQuinn et al. 2006)

δP21(k, µ) = P21(k, µ) +
T2

sys

Btint

D2∆D
n(k⊥)

( λ2

Ae

)2
, (22)

where Tsys is the system temperature which is estimated

as ∼ 280[(1 + z)/7.5]2.3 K. B and tint are the survey band-
pass and the integration time for 21cm observation, re-
spectively. D is the comoving distance to the 21cm sur-
vey volume and the comoving survey width ∆D is given by

∆D = 1.7( B
0.1MHz )( 1+z

10 )1/2(Ωmh2

0.15 )−1/2. n(k⊥) is the number
density of baselines in observing the perpendicular compo-
nent of the wave vector, k⊥ = (1 − µ2)1/2k. We assume that
it is decreased continuously as r−2. Ae is the effective area
of each antenna tile and λ is the observed 21cm wavelength.
The first and second terms represent sample variance and
thermal noise, respectively.

Similarly, the error on a galaxy survey for a particular
mode is given by (Feldman et al. 1994; Tegmark 1997)

δPgal(k, µ) = Pgal(k, µ) + n−1
gal exp(k2

∥σ
2
r ), (23)

where ngal is the mean number density in the galaxy survey.
Its inverse approximately is regarded as shot noise; k ∥ is the
parallel component of wave number, k ∥ = µk. σr = cσz/H (z)
where σz is the redshift error in the galaxy survey. Here
the first term is sample variance and the second term is a
product of shot noise and redshift errors.

With the errors on the 21cm observation and the galaxy
survey, the error on the cross-power spectrum for a particu-
lar mode is give by

2[δP2
21,gal(k, µ)] = P2

21,gal(k, µ) + δP21(k, µ)δPgal (k, µ). (24)

The first term represents sample variance on the cross-power
spectrum and the second term is a product of Eqs. (22)
and (23). We then compute the error on the cross-power
spectrum by summing the errors for each k-modes in inverse
form. The errors on the spherically averaged cross-power
spectrum are,

1
δP2

21,gal(k)
=

∑

µ

∆µ
ϵk3Vsur

4π2
1

δP2
21,gal(k, µ)

, (25)

where ϵ = ∆k/k is the logarithmic width of the spherical
shell, and Vsur is the effective survey volume for 21cm ra-
dio telescope which is given by Vsur = D2∆D(λ2/Ae ). If the
galaxy survey has a smaller volume than 21cm-line survey,
we set Vsur = Vgal.

We then calculate the total signal-to-noise (S/N) ratio
which is summation of the S/N in each k bin,

(S/N )2
total =

Nbin∑

i

( ∆k
ϵki

)
(S/N )2

i , (26)

where Nbin and ∆k are the number of bins and the bin size,
respectively.

Later, we will investigate the error budget of cross-
correlation measurements, so let us represent Eq. (24) more
simply. We denote the thermal noise in Eq. (22) as σN, the
shot noise in Eq. (23) as σg and the error on the cross-power
spectrum as σA. Then, Eq. (24) can be rewritten as

σA(k) ∝
√

P2
21,gal + P21Pgal + P21σg + σNPgal + σNσg. (27)

Each term in Eq. (27) represents a component of the error
on the cross-power spectrum. The error is determined by the
5 terms. We will compare these terms later.
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Figure 3. Simulated Lyα luminosity function and observed LF
at redshift z = 6.6 (top) and z = 7.3 (bottom). The green, red,
and blue solid lines show the simulated LFs in the early, mid,
late model, respectively. In the top panel, the arrows represent
the detectable luminosity range in Ultra-deep, Deep field, and
the case of 3 × tsur in Deep field of HSC LAE surveys.

Without systematic errors, the error on a measurement
of the 21cm power spectrum for a particular mode (k, µ) is
given by (McQuinn et al. 2006)

δP21(k, µ) = P21(k, µ) +
T2

sys

Btint

D2∆D
n(k⊥)

( λ2

Ae

)2
, (22)

where Tsys is the system temperature which is estimated

as ∼ 280[(1 + z)/7.5]2.3 K. B and tint are the survey band-
pass and the integration time for 21cm observation, re-
spectively. D is the comoving distance to the 21cm sur-
vey volume and the comoving survey width ∆D is given by

∆D = 1.7( B
0.1MHz )( 1+z

10 )1/2(Ωmh2

0.15 )−1/2. n(k⊥) is the number
density of baselines in observing the perpendicular compo-
nent of the wave vector, k⊥ = (1 − µ2)1/2k. We assume that
it is decreased continuously as r−2. Ae is the effective area
of each antenna tile and λ is the observed 21cm wavelength.
The first and second terms represent sample variance and
thermal noise, respectively.

Similarly, the error on a galaxy survey for a particular
mode is given by (Feldman et al. 1994; Tegmark 1997)

δPgal(k, µ) = Pgal(k, µ) + n−1
gal exp(k2

∥σ
2
r ), (23)

where ngal is the mean number density in the galaxy survey.
Its inverse approximately is regarded as shot noise; k ∥ is the
parallel component of wave number, k ∥ = µk. σr = cσz/H (z)
where σz is the redshift error in the galaxy survey. Here
the first term is sample variance and the second term is a
product of shot noise and redshift errors.

With the errors on the 21cm observation and the galaxy
survey, the error on the cross-power spectrum for a particu-
lar mode is give by

2[δP2
21,gal(k, µ)] = P2

21,gal(k, µ) + δP21(k, µ)δPgal (k, µ). (24)

The first term represents sample variance on the cross-power
spectrum and the second term is a product of Eqs. (22)
and (23). We then compute the error on the cross-power
spectrum by summing the errors for each k-modes in inverse
form. The errors on the spherically averaged cross-power
spectrum are,

1
δP2

21,gal(k)
=

∑

µ

∆µ
ϵk3Vsur

4π2
1

δP2
21,gal(k, µ)

, (25)

where ϵ = ∆k/k is the logarithmic width of the spherical
shell, and Vsur is the effective survey volume for 21cm ra-
dio telescope which is given by Vsur = D2∆D(λ2/Ae ). If the
galaxy survey has a smaller volume than 21cm-line survey,
we set Vsur = Vgal.

We then calculate the total signal-to-noise (S/N) ratio
which is summation of the S/N in each k bin,

(S/N )2
total =

Nbin∑

i

( ∆k
ϵki

)
(S/N )2

i , (26)

where Nbin and ∆k are the number of bins and the bin size,
respectively.

Later, we will investigate the error budget of cross-
correlation measurements, so let us represent Eq. (24) more
simply. We denote the thermal noise in Eq. (22) as σN, the
shot noise in Eq. (23) as σg and the error on the cross-power
spectrum as σA. Then, Eq. (24) can be rewritten as

σA(k) ∝
√

P2
21,gal + P21Pgal + P21σg + σNPgal + σNσg. (27)

Each term in Eq. (27) represents a component of the error
on the cross-power spectrum. The error is determined by the
5 terms. We will compare these terms later.
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Figure 3. Simulated Lyα luminosity function and observed LF
at redshift z = 6.6 (top) and z = 7.3 (bottom). The green, red,
and blue solid lines show the simulated LFs in the early, mid,
late model, respectively. In the top panel, the arrows represent
the detectable luminosity range in Ultra-deep, Deep field, and
the case of 3 × tsur in Deep field of HSC LAE surveys.

Without systematic errors, the error on a measurement
of the 21cm power spectrum for a particular mode (k, µ) is
given by (McQuinn et al. 2006)

δP21(k, µ) = P21(k, µ) +
T2

sys

Btint

D2∆D
n(k⊥)

( λ2

Ae

)2
, (22)

where Tsys is the system temperature which is estimated

as ∼ 280[(1 + z)/7.5]2.3 K. B and tint are the survey band-
pass and the integration time for 21cm observation, re-
spectively. D is the comoving distance to the 21cm sur-
vey volume and the comoving survey width ∆D is given by

∆D = 1.7( B
0.1MHz )( 1+z

10 )1/2(Ωmh2

0.15 )−1/2. n(k⊥) is the number
density of baselines in observing the perpendicular compo-
nent of the wave vector, k⊥ = (1 − µ2)1/2k. We assume that
it is decreased continuously as r−2. Ae is the effective area
of each antenna tile and λ is the observed 21cm wavelength.
The first and second terms represent sample variance and
thermal noise, respectively.

Similarly, the error on a galaxy survey for a particular
mode is given by (Feldman et al. 1994; Tegmark 1997)

δPgal(k, µ) = Pgal(k, µ) + n−1
gal exp(k2

∥σ
2
r ), (23)

where ngal is the mean number density in the galaxy survey.
Its inverse approximately is regarded as shot noise; k ∥ is the
parallel component of wave number, k ∥ = µk. σr = cσz/H (z)
where σz is the redshift error in the galaxy survey. Here
the first term is sample variance and the second term is a
product of shot noise and redshift errors.

With the errors on the 21cm observation and the galaxy
survey, the error on the cross-power spectrum for a particu-
lar mode is give by

2[δP2
21,gal(k, µ)] = P2

21,gal(k, µ) + δP21(k, µ)δPgal (k, µ). (24)

The first term represents sample variance on the cross-power
spectrum and the second term is a product of Eqs. (22)
and (23). We then compute the error on the cross-power
spectrum by summing the errors for each k-modes in inverse
form. The errors on the spherically averaged cross-power
spectrum are,

1
δP2

21,gal(k)
=

∑

µ

∆µ
ϵk3Vsur

4π2
1

δP2
21,gal(k, µ)

, (25)

where ϵ = ∆k/k is the logarithmic width of the spherical
shell, and Vsur is the effective survey volume for 21cm ra-
dio telescope which is given by Vsur = D2∆D(λ2/Ae ). If the
galaxy survey has a smaller volume than 21cm-line survey,
we set Vsur = Vgal.

We then calculate the total signal-to-noise (S/N) ratio
which is summation of the S/N in each k bin,

(S/N )2
total =

Nbin∑

i

( ∆k
ϵki

)
(S/N )2

i , (26)

where Nbin and ∆k are the number of bins and the bin size,
respectively.

Later, we will investigate the error budget of cross-
correlation measurements, so let us represent Eq. (24) more
simply. We denote the thermal noise in Eq. (22) as σN, the
shot noise in Eq. (23) as σg and the error on the cross-power
spectrum as σA. Then, Eq. (24) can be rewritten as

σA(k) ∝
√

P2
21,gal + P21Pgal + P21σg + σNPgal + σNσg. (27)

Each term in Eq. (27) represents a component of the error
on the cross-power spectrum. The error is determined by the
5 terms. We will compare these terms later.
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Figure 3. Simulated Lyα luminosity function and observed LF
at redshift z = 6.6 (top) and z = 7.3 (bottom). The green, red,
and blue solid lines show the simulated LFs in the early, mid,
late model, respectively. In the top panel, the arrows represent
the detectable luminosity range in Ultra-deep, Deep field, and
the case of 3 × tsur in Deep field of HSC LAE surveys.

Without systematic errors, the error on a measurement
of the 21cm power spectrum for a particular mode (k, µ) is
given by (McQuinn et al. 2006)

δP21(k, µ) = P21(k, µ) +
T2

sys

Btint

D2∆D
n(k⊥)

( λ2

Ae

)2
, (22)

where Tsys is the system temperature which is estimated

as ∼ 280[(1 + z)/7.5]2.3 K. B and tint are the survey band-
pass and the integration time for 21cm observation, re-
spectively. D is the comoving distance to the 21cm sur-
vey volume and the comoving survey width ∆D is given by

∆D = 1.7( B
0.1MHz )( 1+z

10 )1/2(Ωmh2

0.15 )−1/2. n(k⊥) is the number
density of baselines in observing the perpendicular compo-
nent of the wave vector, k⊥ = (1 − µ2)1/2k. We assume that
it is decreased continuously as r−2. Ae is the effective area
of each antenna tile and λ is the observed 21cm wavelength.
The first and second terms represent sample variance and
thermal noise, respectively.

Similarly, the error on a galaxy survey for a particular
mode is given by (Feldman et al. 1994; Tegmark 1997)

δPgal(k, µ) = Pgal(k, µ) + n−1
gal exp(k2

∥σ
2
r ), (23)

where ngal is the mean number density in the galaxy survey.
Its inverse approximately is regarded as shot noise; k ∥ is the
parallel component of wave number, k ∥ = µk. σr = cσz/H (z)
where σz is the redshift error in the galaxy survey. Here
the first term is sample variance and the second term is a
product of shot noise and redshift errors.

With the errors on the 21cm observation and the galaxy
survey, the error on the cross-power spectrum for a particu-
lar mode is give by

2[δP2
21,gal(k, µ)] = P2

21,gal(k, µ) + δP21(k, µ)δPgal (k, µ). (24)

The first term represents sample variance on the cross-power
spectrum and the second term is a product of Eqs. (22)
and (23). We then compute the error on the cross-power
spectrum by summing the errors for each k-modes in inverse
form. The errors on the spherically averaged cross-power
spectrum are,

1
δP2

21,gal(k)
=

∑

µ

∆µ
ϵk3Vsur

4π2
1

δP2
21,gal(k, µ)

, (25)

where ϵ = ∆k/k is the logarithmic width of the spherical
shell, and Vsur is the effective survey volume for 21cm ra-
dio telescope which is given by Vsur = D2∆D(λ2/Ae ). If the
galaxy survey has a smaller volume than 21cm-line survey,
we set Vsur = Vgal.

We then calculate the total signal-to-noise (S/N) ratio
which is summation of the S/N in each k bin,

(S/N )2
total =

Nbin∑

i

( ∆k
ϵki

)
(S/N )2

i , (26)

where Nbin and ∆k are the number of bins and the bin size,
respectively.

Later, we will investigate the error budget of cross-
correlation measurements, so let us represent Eq. (24) more
simply. We denote the thermal noise in Eq. (22) as σN, the
shot noise in Eq. (23) as σg and the error on the cross-power
spectrum as σA. Then, Eq. (24) can be rewritten as

σA(k) ∝
√

P2
21,gal + P21Pgal + P21σg + σNPgal + σNσg. (27)

Each term in Eq. (27) represents a component of the error
on the cross-power spectrum. The error is determined by the
5 terms. We will compare these terms later.
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Figure 3. Simulated Lyα luminosity function and observed LF
at redshift z = 6.6 (top) and z = 7.3 (bottom). The green, red,
and blue solid lines show the simulated LFs in the early, mid,
late model, respectively. In the top panel, the arrows represent
the detectable luminosity range in Ultra-deep, Deep field, and
the case of 3 × tsur in Deep field of HSC LAE surveys.

Without systematic errors, the error on a measurement
of the 21cm power spectrum for a particular mode (k, µ) is
given by (McQuinn et al. 2006)

δP21(k, µ) = P21(k, µ) +
T2

sys

Btint

D2∆D
n(k⊥)

( λ2

Ae

)2
, (22)

where Tsys is the system temperature which is estimated

as ∼ 280[(1 + z)/7.5]2.3 K. B and tint are the survey band-
pass and the integration time for 21cm observation, re-
spectively. D is the comoving distance to the 21cm sur-
vey volume and the comoving survey width ∆D is given by

∆D = 1.7( B
0.1MHz )( 1+z

10 )1/2(Ωmh2

0.15 )−1/2. n(k⊥) is the number
density of baselines in observing the perpendicular compo-
nent of the wave vector, k⊥ = (1 − µ2)1/2k. We assume that
it is decreased continuously as r−2. Ae is the effective area
of each antenna tile and λ is the observed 21cm wavelength.
The first and second terms represent sample variance and
thermal noise, respectively.

Similarly, the error on a galaxy survey for a particular
mode is given by (Feldman et al. 1994; Tegmark 1997)

δPgal(k, µ) = Pgal(k, µ) + n−1
gal exp(k2

∥σ
2
r ), (23)

where ngal is the mean number density in the galaxy survey.
Its inverse approximately is regarded as shot noise; k ∥ is the
parallel component of wave number, k ∥ = µk. σr = cσz/H (z)
where σz is the redshift error in the galaxy survey. Here
the first term is sample variance and the second term is a
product of shot noise and redshift errors.

With the errors on the 21cm observation and the galaxy
survey, the error on the cross-power spectrum for a particu-
lar mode is give by

2[δP2
21,gal(k, µ)] = P2

21,gal(k, µ) + δP21(k, µ)δPgal (k, µ). (24)

The first term represents sample variance on the cross-power
spectrum and the second term is a product of Eqs. (22)
and (23). We then compute the error on the cross-power
spectrum by summing the errors for each k-modes in inverse
form. The errors on the spherically averaged cross-power
spectrum are,

1
δP2

21,gal(k)
=

∑

µ

∆µ
ϵk3Vsur

4π2
1

δP2
21,gal(k, µ)

, (25)

where ϵ = ∆k/k is the logarithmic width of the spherical
shell, and Vsur is the effective survey volume for 21cm ra-
dio telescope which is given by Vsur = D2∆D(λ2/Ae ). If the
galaxy survey has a smaller volume than 21cm-line survey,
we set Vsur = Vgal.

We then calculate the total signal-to-noise (S/N) ratio
which is summation of the S/N in each k bin,

(S/N )2
total =

Nbin∑

i

( ∆k
ϵki

)
(S/N )2

i , (26)

where Nbin and ∆k are the number of bins and the bin size,
respectively.

Later, we will investigate the error budget of cross-
correlation measurements, so let us represent Eq. (24) more
simply. We denote the thermal noise in Eq. (22) as σN, the
shot noise in Eq. (23) as σg and the error on the cross-power
spectrum as σA. Then, Eq. (24) can be rewritten as

σA(k) ∝
√

P2
21,gal + P21Pgal + P21σg + σNPgal + σNσg. (27)

Each term in Eq. (27) represents a component of the error
on the cross-power spectrum. The error is determined by the
5 terms. We will compare these terms later.
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Figure 3. Simulated Lyα luminosity function and observed LF
at redshift z = 6.6 (top) and z = 7.3 (bottom). The green, red,
and blue solid lines show the simulated LFs in the early, mid,
late model, respectively. In the top panel, the arrows represent
the detectable luminosity range in Ultra-deep, Deep field, and
the case of 3 × tsur in Deep field of HSC LAE surveys.

Without systematic errors, the error on a measurement
of the 21cm power spectrum for a particular mode (k, µ) is
given by (McQuinn et al. 2006)

δP21(k, µ) = P21(k, µ) +
T2

sys

Btint

D2∆D
n(k⊥)

( λ2

Ae

)2
, (22)

where Tsys is the system temperature which is estimated

as ∼ 280[(1 + z)/7.5]2.3 K. B and tint are the survey band-
pass and the integration time for 21cm observation, re-
spectively. D is the comoving distance to the 21cm sur-
vey volume and the comoving survey width ∆D is given by

∆D = 1.7( B
0.1MHz )( 1+z

10 )1/2(Ωmh2

0.15 )−1/2. n(k⊥) is the number
density of baselines in observing the perpendicular compo-
nent of the wave vector, k⊥ = (1 − µ2)1/2k. We assume that
it is decreased continuously as r−2. Ae is the effective area
of each antenna tile and λ is the observed 21cm wavelength.
The first and second terms represent sample variance and
thermal noise, respectively.

Similarly, the error on a galaxy survey for a particular
mode is given by (Feldman et al. 1994; Tegmark 1997)

δPgal(k, µ) = Pgal(k, µ) + n−1
gal exp(k2

∥σ
2
r ), (23)

where ngal is the mean number density in the galaxy survey.
Its inverse approximately is regarded as shot noise; k ∥ is the
parallel component of wave number, k ∥ = µk. σr = cσz/H (z)
where σz is the redshift error in the galaxy survey. Here
the first term is sample variance and the second term is a
product of shot noise and redshift errors.

With the errors on the 21cm observation and the galaxy
survey, the error on the cross-power spectrum for a particu-
lar mode is give by

2[δP2
21,gal(k, µ)] = P2

21,gal(k, µ) + δP21(k, µ)δPgal (k, µ). (24)

The first term represents sample variance on the cross-power
spectrum and the second term is a product of Eqs. (22)
and (23). We then compute the error on the cross-power
spectrum by summing the errors for each k-modes in inverse
form. The errors on the spherically averaged cross-power
spectrum are,

1
δP2

21,gal(k)
=

∑

µ

∆µ
ϵk3Vsur

4π2
1

δP2
21,gal(k, µ)

, (25)

where ϵ = ∆k/k is the logarithmic width of the spherical
shell, and Vsur is the effective survey volume for 21cm ra-
dio telescope which is given by Vsur = D2∆D(λ2/Ae ). If the
galaxy survey has a smaller volume than 21cm-line survey,
we set Vsur = Vgal.

We then calculate the total signal-to-noise (S/N) ratio
which is summation of the S/N in each k bin,

(S/N )2
total =

Nbin∑

i

( ∆k
ϵki

)
(S/N )2

i , (26)

where Nbin and ∆k are the number of bins and the bin size,
respectively.

Later, we will investigate the error budget of cross-
correlation measurements, so let us represent Eq. (24) more
simply. We denote the thermal noise in Eq. (22) as σN, the
shot noise in Eq. (23) as σg and the error on the cross-power
spectrum as σA. Then, Eq. (24) can be rewritten as

σA(k) ∝
√

P2
21,gal + P21Pgal + P21σg + σNPgal + σNσg. (27)

Each term in Eq. (27) represents a component of the error
on the cross-power spectrum. The error is determined by the
5 terms. We will compare these terms later.
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Figure 3. Simulated Lyα luminosity function and observed LF
at redshift z = 6.6 (top) and z = 7.3 (bottom). The green, red,
and blue solid lines show the simulated LFs in the early, mid,
late model, respectively. In the top panel, the arrows represent
the detectable luminosity range in Ultra-deep, Deep field, and
the case of 3 × tsur in Deep field of HSC LAE surveys.

Without systematic errors, the error on a measurement
of the 21cm power spectrum for a particular mode (k, µ) is
given by (McQuinn et al. 2006)

δP21(k, µ) = P21(k, µ) +
T2

sys

Btint

D2∆D
n(k⊥)

( λ2

Ae

)2
, (22)

where Tsys is the system temperature which is estimated

as ∼ 280[(1 + z)/7.5]2.3 K. B and tint are the survey band-
pass and the integration time for 21cm observation, re-
spectively. D is the comoving distance to the 21cm sur-
vey volume and the comoving survey width ∆D is given by

∆D = 1.7( B
0.1MHz )( 1+z

10 )1/2(Ωmh2

0.15 )−1/2. n(k⊥) is the number
density of baselines in observing the perpendicular compo-
nent of the wave vector, k⊥ = (1 − µ2)1/2k. We assume that
it is decreased continuously as r−2. Ae is the effective area
of each antenna tile and λ is the observed 21cm wavelength.
The first and second terms represent sample variance and
thermal noise, respectively.

Similarly, the error on a galaxy survey for a particular
mode is given by (Feldman et al. 1994; Tegmark 1997)

δPgal(k, µ) = Pgal(k, µ) + n−1
gal exp(k2

∥σ
2
r ), (23)

where ngal is the mean number density in the galaxy survey.
Its inverse approximately is regarded as shot noise; k ∥ is the
parallel component of wave number, k ∥ = µk. σr = cσz/H (z)
where σz is the redshift error in the galaxy survey. Here
the first term is sample variance and the second term is a
product of shot noise and redshift errors.

With the errors on the 21cm observation and the galaxy
survey, the error on the cross-power spectrum for a particu-
lar mode is give by

2[δP2
21,gal(k, µ)] = P2

21,gal(k, µ) + δP21(k, µ)δPgal (k, µ). (24)

The first term represents sample variance on the cross-power
spectrum and the second term is a product of Eqs. (22)
and (23). We then compute the error on the cross-power
spectrum by summing the errors for each k-modes in inverse
form. The errors on the spherically averaged cross-power
spectrum are,

1
δP2

21,gal(k)
=

∑

µ

∆µ
ϵk3Vsur

4π2
1

δP2
21,gal(k, µ)

, (25)

where ϵ = ∆k/k is the logarithmic width of the spherical
shell, and Vsur is the effective survey volume for 21cm ra-
dio telescope which is given by Vsur = D2∆D(λ2/Ae ). If the
galaxy survey has a smaller volume than 21cm-line survey,
we set Vsur = Vgal.

We then calculate the total signal-to-noise (S/N) ratio
which is summation of the S/N in each k bin,

(S/N )2
total =

Nbin∑

i

( ∆k
ϵki

)
(S/N )2

i , (26)

where Nbin and ∆k are the number of bins and the bin size,
respectively.

Later, we will investigate the error budget of cross-
correlation measurements, so let us represent Eq. (24) more
simply. We denote the thermal noise in Eq. (22) as σN, the
shot noise in Eq. (23) as σg and the error on the cross-power
spectrum as σA. Then, Eq. (24) can be rewritten as

σA(k) ∝
√

P2
21,gal + P21Pgal + P21σg + σNPgal + σNσg. (27)

Each term in Eq. (27) represents a component of the error
on the cross-power spectrum. The error is determined by the
5 terms. We will compare these terms later.
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MWA GLEAM catalogue  
(Hurley-Walker+2017)

Modeled by J. Line 

Point sources

A parametric model of diffuse 
emission from our Galaxy  
(Jelic et al 2008, Trott et al 
2016)

Diffuse emission
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Figure 7. 1D PS calculated from the 2D PS. The mid model is
on top panel, late is on bottom. The red line shows the 21 cm-
LAE cross PS and negative part is the dashed line, positive is
solid line. The dot-dashed line is the detection limit and the
dashed line is total error. The solid line shows the contribution
from point sources, and the dotted from diffuse emission.
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Figure 8. The 1D 21 cm auto PS of the mid and late models are
shown as solid and dashed lines, respectively. The dotted line is
the thermal noise of MWA 128 tiles. The dot-dashed line is the
PS of foregrounds, including point sources and diffuse emission.
These are calculated from the 2D PS at k⊥ < 0.04, excluding
signals in foreground wedge.

signal in the EoR window at k⊥ < 0.08 hMpc−1, where
the foregrounds are naturally avoided. Even if we use such
a foreground quiet region, the foreground PS is 4 orders of
magnitude larger than the 21 cm signal at k > 0.4 hMpc−1.

6.3 Requirement for detection

As shown in this section, our results indicate that the fore-
ground removal of a few orders of magnitude is required
to detect the 21 cm signal, even if we combine foreground
avoidance and cross correlation techniques. In the rest of
this section, we discuss how much of the foregrounds we
need to subtract. Here, we mainly focus on the late model
to find the minimum effort required for measuring the 21 cm
signal.

We have remarked that the error of cross PS is deter-
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Figure 9. The 1D cross PS of the signal compared with the er-
ror, where 99% foreground removal, the MWA having 256 tiles,
and a 3 times larger LAE survey area are assumed. As in Fig. 7,
the red line shows the 21 cm-LAE cross PS. The dot-dashed line
is the detection limit and the dashed line is the total error. The
dotted line is the contribution from foregrounds, which is the
dominant term of total error at large scales. The solid line rep-
resents the error with prefect foreground removal. The main com-
ponent of the solid line is thermal noise, which dominates the
error at small scales.

mined by the product of contributions from 21 cm - LAE
observations. We have assumed the upcoming LAE survey
with the HSC-PFS experiment, which already has the low-
est conceivable noise to come in experiments scheduled for
the next few years. The only way then to improve the shot
noise is to increase the survey area. We therefore mainly dis-
cuss the improvement of the thermal noise and foreground
removal in the following. It should also be noted that the
redshift error of the HSC survey corresponds to the sur-
vey depth, ∆z ∼ 0.1. This large redshift error increases the
shot noise; Kubota et al. (2017) shows that a signal detec-
tion at small scales is difficult without the PFS, even using
SKA LOW.

As shown in Fig. 7, the error term including the fore-
grounds is at least two orders of magnitude larger than
signal. At k > 0.4 hMpc−1, the contribution from point
sources dominates and therefore we need to subtract 99%
of the point source foreground. Although the contribution
from diffuse emission is weaker than that from point sources
at these scales, we need to remove 80% of diffuse emis-
sion at k ∼ 0.4 hMpc−1. The level of foreground removal
of diffuse emission seem to be possible. For example, in
Beardsley et al. (2016), they succeeded in removing around
70% of the diffuse emission. To achieve these levels they cre-
ated a diffuse foreground image confined to the main beam
of the MWA (of order 20◦ across) from 3hours of data.
This image was also integrated in frequency, and then sub-
tracted from the data. Their method is relatively simple,
and by including spectral structure, and a bright galactic
model as well, the foreground removal can be improved.
Furthermore, once they subtracted a point source model
based on a hybrid sky catalogue, the power in the wedge
was reduced to 2 orders of magnitude weaker than that
shown by our point source model in Fig. 2. This indicates
90% of the point source foreground was removed. There-
fore, the precision of foreground removal of point sources
which has been already achieved is one order of magnitude
worse than to the required level in this work.

While we find hopeful results at k < 0.3 hMpc−1,
there is serious foreground leakage into the EoR window,
and the SNR is less than 10−4 at k ∼ 0.2 hMpc−1. There,
we need a 99.99% reduction of the diffuse emission. Al-
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2 orders of 
magnitude

Impact of Foreground Emission

・The contribution from foreground does not vanish.  
・Foreground removal is still required for detecting the EoR 
21cm signal, even in the case of CC analysis. 



 Summary
• A two-step approach (RHD + large-scale post-processing 

radiative transfer) to simulate the large-scale cosmic 
reionization process 

• Modelling LAEs (Inoue, KH et al. 2018) 
     Mh-dependent Lya escape fraction is favored

• PFS enhances the detectability of the 21cm-LAE CPS at 
low scales. (Kubota, KH et al. 2018) 

• Many efforts for foreground removal is required even in 
the case of the CPS measurement. (Yoshiura, KH et al. 
2018)


