Update on the pathchiness of IGM opacity to Lyman-α radiation

Sarah Bosman University College London

George Becker, Martin Haehnelt, Xiaohui Fan, Yoshiki Matsuoka (SHELLQs collaboration), Sophie Reed (DES-VHS collaboration), Linhua Jiang (SDSS collaboration)

Probing Reionisation using Lyman-α transmission towards AGN

SARAH BOSMAN

Probing Reionisation using Lyman-α transmission towards AGN

Full Gunn-Peterson absorption kicks in at *z*=5.9

→ Universe is at least 99.9% ionized at *z*<5.9 in a global-averaged sense

Probing Reionisation using Lyman-α transmission towards AGN

Becker+15 discovers extremely opaque line of sight spanning z=5.5 – 5.85 :

Intrinsic $\Delta \tau_{eff}$ at the same redshift much larger than expected from density fluctuations alone!

$$au_{
m eff}$$
 = - In (< F >_{50 cMpc h⁻¹})

Three families of models proposed:

Rare bright sources contribute significantly: AGN, largest galaxies

e.g. Chardin+15, 17

Differential timing

of Re^o due to temperature fluctuations: high ρ regions ionize, cool down and recombine first

e.g. D'Aloisio+15; Keating+17 Varying mean free path of Re^o photons due to fluctuations of the UV background

e.g. Davies & Furlanetto 16

Our objective: improve measurements of $au_{ m eff}$

Dramatic increase in number of lines of sight: 62 (96) up from 33

-> Grasp on cosmic variance, error bars

Consistent measurement of au_{eff} across all lines of sight

Push to z=6.1

Test biases in a statistical sample (e.g. length of proximity zone, data quality, bin size)

The catalogue: 62 QSOs at z>5.7

SARAH BOSMAN

Measurement technique

- Normalize spectrum by power-law fit to continuum
- τ_{eff} = In (<*F*>) over fixed comoving window usually 50 *c*Mpc h^{-1}
- Excludes quasar proximity zone, BALs and DLAs
- Two bounds depending on treatment of non-detections:

take	$\tau_{\rm eff}$ = – ln (2 ϵ)	"real flux just below detection threshold"
and	$\tau_{\rm eff}$ = ∞	"real $F = 0$ "

Results

We confirm the huge spread in Lyman- α opacities

Opaque 'tail' already exists at z=5.2 !!

First bounds at *z*=6.0

Consistency with previous work

Our sample contains all quasars from previous B15 study: can check we get the same results

All distributions agree with both Fan+06 and Becker+15 within 1 σ measured via bootstrap (sub)sampling

Systematics: proximity zone

Stacks of quasars in redshift bins + individual inspection

→ Choose $\lambda = 1178$ Å as fixed end of proximity zone

Systematics: binning size

Repeat using I = 10, 30, 50, 70 *c*Mpc h^{-1}

 $I = 10 cMpc h^{-1}$ picks up individual peaks and troughs

 $l > 30 c Mpc h^{-1}$ necessary

Systematics: data quality

Pick SILVER and GOLD samples of objects with SNR > 5.3 and SNR > 11.2 (matching previous studies)

Only few spectrographs can detect τ_{eff} > 4 !

Comparison with numerical models

Rare bright sources contribute significantly:

Lines of sight from Chardin+17 **Differential timing** of Re^o due to temperature fluctuations:

Lines of sight from Keating+17 'Null hypothesis'

with constant UV background:

Lines of sight from the Sherwood simulation Bolton+17

The global emissivity in all of these is tuned to match the mean flux !!

Comparison with numerical models

Models don't work

Rare sources model does the best but still mismatches observations

More models being developed...

Comparison with numerical models

Models don't work

Mean opacity is a 'forced match' to simulations

Spread or **skewness** is the issue

Conclusions

- Improved measurements of Lyman- $\alpha \tau_{eff}$
 - Opaque tail still exists are z = 5.2 ... which is a problem
 - First bounds at *z* = 6.1
- Discrepancy with numerical models persists / gets worse when considering nondetection bounds
- A rare-sources-only (toy) model provides the only decent fit to the data so far...
 - Future: better radiative transfer, self-shielding...
 - Implications for observing high-z LAEs ?

SARAH BOSMAN

SARAH BOSMAN