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LAES as prolbes of reionisation
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Extended Lya halos around (high-z) galaxies:
Can we use that to learn about SN feedback ?

(a) Scattered light (b) Cold streams (c) Satellite galaxies (d) fluorescence
in the CGM
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Lya emission

Momose+16, Mas-Ribas+17

~ We need to build a quantitative theéry for all these enario :
“ which relates detailed Lya observables to physical properties |
| of galaxies and their CGM. This would allow us to set direct

constraints on SN feedback.

— =———




Can simulations help us understand idealised
models ?
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l. Numerical challenges in predicting Lya from simulations.
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ll. Angular and time variations
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l. Numerical challenges in predicting Lya from
simulations



Predicting Lya emission from simulated galaxies

Recombinations Collisional excitation
Hi + e — Hy HI—|-€—>Hi'<

HY — Hi+ 91+ 92 + .. Hf = Hi+71 +92 + ...



Predicting Lya emission from simulated galaxies

Photo-ionisation

Strong shocks Weak shocks
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Fluorescent Lya emission can
be robustly computed with ionising
RT in post-processing of regular
simulations (“Hydro + RT”)
(see e.g. Cantalupo+05,
Laursen+09a, Kollmeier+10,
/Zheng+10,11, Yajima’s talk,
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Photo-heating from the UVB
requires some on-the-fly self-
shielding approximation (see
Furlanetto+03, Goerdt+10 vs.

Faucher-Giguere+10,
Rosdahl+12).
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imulated galaxies
The operator-splitting pitfall :
! The time resolution of a typical
cosmological simulation is set
regardless of the cooling time.
This may lead to order-of-
magnitude errors in Lya collisional

Weak shocks
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heating, turbulence, ...)

ocks
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Predicting Lya emission from simulated galaxies

- Full Radiation-hydrodynamics : on-the-fly self-shielding from
UVB is OK for the CGM but misses an important photo-heating
term in the ISM.

- High resolution : resolve everywhere the cooling time +
resolve small-scale ISM structure (see Verhamme+12 &
Behrens & Braun 14, + Kimm and Smith’s talks).

- Dust model : e.g. from metallicity & HI distributions
(Laursen+09)

- Lya RT : this is a problem solved (although solution may
become more efficient see Smith+17)



Example simulation used In this talk

- Zoom-in RHD simulation (RAMSES-RT): gas is evolved together with
lonising radiation emitted by star particles.

- Star formation is triggered where the turbulent Jeans length becomes
unresolved. Stars are formed on a free-fall timescale, with a high (local)
efficiency. [Kimm+17, Trebitsch+17].

- No polytropic EoS.

- SN feedback is Kimm+15’s mechanical feedback, which injects
momentum so as to reproduce all phases of the Sedov explosion. [see also
Rosdahl+16]

- We use an on-the-fly self-shielding approximation, in which the UVB is
damped exponentially at nH > 0.01 / cm3.

- Mock observations (Lya, broad bands) are computed with radiative
transfer in post-processing (RASCAS, Michel-Dansac+18, in prep.)
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Mhaio = 5.5 1010 Msun, DM particles ~104 Msun, star particles ~103 Msun, dx ~15pc



Our simulated galaxy is a typical LAE as observed
by Wisotzki+16 and Leclercg+18

Hashimoto+18
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This simulation

Fromz=06and z = 3,
Stellar mass goes from ~108Msun 10 ~10%Msun
SFR grows from ~0.1 to ~10 Msun/yr
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. Lya budget & extended emission

How much is emitted, how much escapes, how much scatters ?
Where is it emitted, from where does it escape, where does it scatter ?



Global Lya budget #1
Intrinsic emission vs. SFR

1 Simulated galaxy at different
times (from z=6 to 3)

Xp The total Lya luminosity
% (“fluorescence + cooling”)
scales linearly with SFR
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What drives the luminosity : fluorescence or “cooling”

- Expectations from Tasitsiomi 2006, Laursen+07,09a,09b: Recombinations
dominate (>90%) total emission, and collisions are negligible (< 10%).

- Yaima+12 : Collisions dominate (~90% at z=10) down to z=3 (~50%),).
Strong redshift evolution.



Global Lya budget #2
What is emitted from (simulated) galaxies

redshift
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Global Lya budget #3
What is observed from (simulated) galaxies
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Where are photons emitted and absorbed
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Most recombination Lya photons are absorbed in their “Birth Cloud”. Collisional
emission comes from more diffuse regions from which escape is easier.
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Extended emission
Impact of scattering and dust

Intrinsic SB profile (before Lya RT)

10-16:
] Collisions
Recombinations

10—17:

1018 4

SB [erg/s/cm?/arcsec?]

10719

10—20

arcsec



Extended emission
Impact of scattering and dust

Observed SB profile (after Lya RT)
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Extended emission
Impact of scattering and dust
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See also
Aaron Smith’s talk !

ll. Angular and time variations

Similar galaxies have very different line properties ... What if we could observe
a single galaxy along many lines of sight or at different times ?



Escape fraction vs. time and mass
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Strong & rapid variations are expected due to the small-scale
nature of escape regulation (Behrens+14). Some correlation with
Halo Mass (see also Laursen+09, Yajima+12b).



Escape fraction vs. line-of-sight

Yajima+12b

cosf

0% Lya escape fraction 100%

As Laursen+09b & Yajima+12b, we find that the escape
fraction modulates Lya luminosity by a factor less than
~3 In different directions. This factor is probably larger in
disc galaxies (Yajima+12, Verhamme+12, Behrens+14).



Spectra ...

the same time but in different directions !!

These all come from the same simulated galaxy observed at
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Equivalent width boost




Equivalent width boost

EWint ~ 75A



Equivalent width boost and Ando effect

Are high-EW objects
extreme objects or
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V. Future directions

Small scales (see talks by Taysun Kimm and Aaron Smith)
SPHINX Project
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Summary

- Fluorescence largely dominates intrinsic emission, but perhaps not what we see.

- Scattering enhances the CGM SB by a factor ~ 1-3 and produces a halo in
reasonable agreement with Leclercg’s LAHS.

- The total Lya flux variation with line-of-sight is of limited amplitude (+/x 2-3).

- The spectral shape of the Lya line varies so much with line-of-sight, one wonders
if it may relate to any global properties of the galaxy.

- Differential extinction of Lya wrt. UV continuum produces strong EW where the
continuum is strongly absorbed.

- SPHINX is the first simulation ever that will allow us to carry out a fully consistent
investigation of LAEs and their visibility through the local IGM during the EoR.



