UV Luminosity Functions at z~4-7 Derived with the Half-million Dropouts on the 100 deg² Sky

is in Hawaii for his observations …

Y. Ono, M. Ouchi, <u>Yuichi Harikane</u>, J. Toshikawa, M. Rauch, S. Yuma,
M. Sawicki, T. Shibuya, K. Shimasaku, M. Oguri, C. Willott, M. Akhlaghi,
M. Akiyama, J. Coupon, H. Furusawa, N. Kashikawa, Y. Komiyama,
A. Konno, L. Lin, Y. Matsuoka, S. Miyazaki, T. Nagao, K. Nakajima,
B. J. Silverman, M. Tanaka, Y. Taniguchi, S.-Y. Wan

Tokyo Spring Cosmic Lya Workshop (Sakura CLAW), 2018 March

Luminosity Function at Low-z

(http://ned.ipac.caltech.edu/level5/March12/Silk/Silk2.html)

Bright end of the UV luminosity function at low-z

- exponential cutoff due to AGN feedback (e.g., Croton+06, Loveday+12)

Luminosity Function at High-z

(Bowler et al. 2017; see also Bouwens et al. 2015, Finkelstein et al. 2015)

- $\boldsymbol{\cdot}$ Bright end of the UV luminosity function at high-z
 - Schechter (exponential cutoff)? or power law?
 - inefficient star-formation quenching feedback at high-z?

Data

Data: S16A internal release of the Subaru HSC Survey (Aihara et al. 2018)

- Ultradeep (UD)
- · Deep (D)
- Wide (W)

- Limiting magnitude (5-sigma ABmag)
 - UD: g~27, r~27, i~26.5, z~26, y~25
 - D: g~26.5, r~26, i~26, z~25, y~24.5
 - W: g~26, r~26, i~26, z~25, y~24
 - → select high-z galaxy candidates by using the Lyman break technique.

Dropout Sample

	z~4	z~5	z~6	z~7
	# of	# of	# of	# of
Field	g-drops	r-drops	i-drops	z-drops
UD-SXDS	9916	1209	36	_
UD-COSMOS	10644	1990	50	—
D-XMM-LSS	6730	711	6	0
D-COSMOS	45767	6282	64	4
D-ELAIS-N1	19631	612	15	1
D-DEEP2-3	35963	1498	47	5
W-XMM	113582	6371	81	7
W-GAMA09H	44670	5989	98	16
W-WIDE12H	94544	5243	36	8
W-GAMA15H	104224	6457	73	14
W-HECTOMAP	30663	1082	11	7
W-VVDS	23677	1500	20	11
Total	540011	38944	537	73

in total 579,565

Dropout Sample

- · protocluster study: Toshikawa et al. (2018) \rightarrow Jun's poster
- UV luminosity function: Ono et al. (2018) \rightarrow This talk

and others …

Clustering Analysis of Dropouts

Harikane et al. 2018

- Angular correlation functions with unprecedentedly high statistical accuracies
- Redshift-independent relation between SFR and dark matter accretion
- See Harikane et al. 2018 for more details

Comparison with Spectroscopic Results

- In total, 358 dropouts in our sample have been identified at z>3.5.
 - + Five high-z galaxies are from our Subaru and Magellan follow-up.
 - + Our previous spec. obs. results are incorporated.
 - + Spec-z catalogs obtained by other studies are also checked.
- Contamination rates ~10% based on previous spectroscopy results.

UV Luminosity Function at z=4

UV Luminosity Functions at z=5-6

(Ono et al. 2018)

AGN Contamination

- consistent with previous results at M_{UV} > -23.
- appear to have <u>an excess</u> at $M_{UV} < -23$.

comparable to the number densities of AGNs

AGN Contamination

AGN Contamination

galaxies and AGNs

Galaxy UV Luminosity Function at z=6

Red circles: galaxy UV LFs

derived by subtracting the AGN contributions based on the galaxy fraction.

• The bright end shape cannot be explained by the Schechter function.

Galaxy UV Luminosity Function at z=6

- Red circles: galaxy UV LFs
 - derived by subtracting the AGN contributions based on the galaxy fraction.
- \cdot The bright end shape cannot be explained by the Schechter function.
- DPL and lensed Schechter provide better fits.

Summary

- ~500,000 dropout candidates at z=4-7 are identified based on the HSC SSP.
- Among them, **358** dropouts have **spec-z**.
- The obtained z=4-7 UV LFs span a very wide range of -26 < Muv < -14 mag, which combine our results with those from the Hubble legacy surveys.
- The bright end shapes of UV LFs cannot be explained by the Schechter functions at >2 σ , and require either DPL or lensed Schechter.