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NEWS
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Hope fades for neutrino dark matter

Physicists in the US have cast further doubt on whether a controversial neutrino is a potential candidate

for dark matter — a mysterious substance that makes up nearly a quarter of the mass of the universe.

John Beacom (http://www.physics.ohio-state.edu/~beacom/) and Hasan Yuksel from Ohio State
University and Casey Watson from Millikin University, Illinios have analysed data from the
International Gamma-Ray Astrophysics Laboratory (INTEGRAL) satellite to rule out a range of possible
mass values that “sterile” neutrinos, a candidate for dark matter, can take.

Neutrinos, which do not have an electric charge, currently come in three types or "flavours™ — electron,
muon and tau — that are each “active” meaning they interact via the nuclear wealk force. Neutrinos also

oscillate from one flavour to another as they travel, implying they have a mass.

In 1905, researchers based at the Liquid Seintillating Neutrino Detector (LSND) at Los Alamos looked at
the oscillations between anti-muon and anti-electron neutrinos. To account for a discrepancy in the
measured mass difference — a property that governs neutrino oscillation — they proposed a fourth, or
“sterile” neutrino, which does not interact via the electrowealk force and has a mass below about 1 eV.
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Particle Data Book 2008
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Watson et al. PR D74,033009 (2008)
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Gouvea, Jenkins & Vasudevan, PR D 75,013003 (2007)

Plausible mass and mixing parameters

for WDM
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FIG. 4. Shown is the parameter space available for sterile neu-
trino dark matter, with varying lepton-number cosmologies. The
contours (numbered by their initial lepton number) are positions in
the mass and mixing angle space where sterile neutrinos produce
critical densities of {);#2=0.15. The thin (thick) lines are for first-
order (crossover) QCD transitions (7T ;=150 MeV). Also shown
are the excluded regions (shaded gray) from small scale
structures—the Gunn-Peterson bound and Lyman-a forest—and
halo phase space densities, the resolution of the diffuse x-ray back-
ground by Chandra, and observations of the Virgo cluster by XMM-
Newton. The dashed region is that which may be probed by the
proposed Constellation-X mission [18].
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Sterile neutrino WDM model
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Watson et al. PR D74,033009 (2008)

Sterile neutrinoDFH FREEIZ X A HIFR

> TAUXIRE, = m2 via v Ve, Y

» Cosmic X-ray Background (CXB)

» XMM/HEAO-I: m, <9.3 keV [Boyarsky et al.
2006]

» Galaxies/clusters
> Vir A (M87): m  <8.2 keV [Abazajian 2006]

» Vir A, Coma: m, <6.3 keV [Abazajian &
Koushiappas 2006]

» Andromeda: m_ <3.5 keV [Watson et al. 2006]
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FI1G, 2 (color online),  Here we present constraints on o, as a
function of mixing angle, sin?2#, assuming that all dark matter is
comprised of sterile neutrinos. To facilitate comparisons, we
adopt many ol the conventlons used by Abazajian and
Koushiappas [35]. For L = 0O, the thick, solid line corresponds
o L2, = 0.24 [Eq. (5)]. while the shaded region to the right
corresponds to £2, = 0,24, Three density-production relation-
ships associated with £2, = 0.3 and L = 10 '? are also shown
[35]). The two previous direct radiative decay (¢, — ¢, , . + y)
upper Hmits (both 959 C. L)) are based on measurements [55—
58] of the cosmic x-ray background [59] and XMM observations
160.62,63] of Virgo A (M87) and the Coma cluster [33,35.611.
The most stringent direct limits, from the present work (also
Q5% C.1L.), are based on XMAM observations of the Andromeda
galaxy [64]. The region bounded by the dashed line is excluded
by the "I, , ~scaling method,"” while the region above the solid,
slightly jangged line is excluded by the more accurate ““direct data
method™ (see Sec. V). The indirect lower limits (all 95% C.1L..)
labeled Ly (1) and Lyea(2) were derived in Rel. [33], while

Lya(3) wasx derived in Ref. [34]. Sterile ncutrinos that
E [keV] occupy the horizontally hatched region could explain pulsar

kicks [SO-—-54).
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» Teegarden and Watanabe (2006)
Point and diffuse sources in the Milky Way
SPI data, 20-8000 keV
Tested for lines of intrinsic width 0, [0 100 & 1000 keV

» Large-scale regions around Galactic center
|3 degree’ (exposure 1.9x10%) and 30 degree" (3.6x 10°s)
Upper limits on flux from an unknown line emission

Average flux away from GC (>30deg) was subtracted — cancels
all cosmic signal and part of halo signal

Limits around GC: <I10-*photons cm2s! (3.50)



Milky Way dark matter decay flux

» Photon flux within an angle y from GC
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» Lower bound for the integral when p__is constant within
R..: J(y)~2, AQ=27(]-cos y)=0.16 (for y=13°)



Milky Way dark matter decay flux (cont.)

» Realistic dark matter density profile:
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FIG. 2 (color online). Left: The line of sight integral 7 (i) as a
function of the pointing angle ¢ with respect to the Galactic
center direction for the three different profiles considered

(Kravtsov, NFW, and Moore, in order of solid line, dashed
line, and dotted line). Right: Integrals up to the angle ¢ of
J(¢) (thin upper lines) and 7 () — 7(30°) (thick lower lines).
The gray line at 13° marks the field of view for the INTEGRAL
flux limit, and we chose [,q dQ[T(¥) — J(30°)]=0.5 as a
conservative value for our subsequent constraints.



Constraints on sterile neutrinos

» Upper limits from subtraction
AF, = 2R [ g0L7(p) - 7(30°)])

dmm. 7 JaQ

=~ 0.5 (conservative limits for y=13°)
3 times larger limit for w=30°, but flux is also 2-3 times larger

— Results are rather robust against angular region

» Constraints on mass and mixing: flux < INTEGRAL limit
Fun® > [ g0[74)- 760} (next page figure)

47TI T

This assumes sterile neutrinos comprise all of the required
dark matter.



Mass and mixing parameter space
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FIG. 1 (color online). The sterile neutrino dark matter mass mi;
and mixing sin’26@ parameter space, with shaded regions ex-
cluded. The strongest radiative decay bounds are shown, labeled
as Milky Way (this Letter), CXB [11], and x-ray Limits (sum-
marized using Ref. [12]; the others [13] are comparable). The
strongest cosmological bounds [9] are shown by the horizontal
band (see caveats in the text). The excluded Dodelson-Widrow
[3] model is shown by the solid line; rightward, the dark matter
density is too high (stripes). The dotted lines are models from
Ref. [14], now truncated by our constraints.

14 mmmm) “Hope fades for neutrino dark matter...”



Smirnov & Zukanovich Funchal, PR D74,013001 (2006)

Previous limits
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