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Fig. 3.— Variation of the photon time delay as a function of the redshift z (in a logarithmic
scale) in cosmological models with large extra-dimensions for a fundamental energy scale
Er = 7 x 10" GeV and for different photon energy values: F; = 1 TeV, E; = 1 eV (solid
curve), B} = 10 GeV, E; = 1 MeV (dotted curve), Fy = 1 MeV, E; = 1 eV (short dashed
curve) and F; = 300 keV, Es; = 30 keV (long dashed curve). For the mass, dark energy and
dark radiation parameters we have used the values y; = 0.3, Q4 = 0.68 and Q; = 0.02,

respectively. Harko & Cheng,ApJ 611,633 (2004)



Time delay by QG eifects

» Linear
Aclc = -E/Mqg,
Ref: . Ellis, astro-ph/0010474
» Quadratic
Aclc = -(E/Mgg))?
Ref:Alfaro et al, PRL 84,2318 (2000)

» QG scale Mg, Moy ~ Mp=2.4x10'8GeV (reduced
Planck scale) but could be smaller



Data: Mrk 501 by MAGIC

» May-July 2005, 30 nights

» 31.6hr over 24 nights, zenith angle: 10-30deg — >150 GeV
» AE/E ~23% over 170 GeV — [0 TeV

» Average flux (>150 GeV) (11.0£0.3)x10-'9 cm-2s!

» Two flare nights: June 30 and July 9
» June 30:250 GeV — | TeV
» July 9: 150 GeV - |0 TeV
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Light curves on June 30 and July 9
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Fig. 5.— Integrated-flux LCs of Mrk 501 for the flare mights of June 30 and July 9. Horizontal
bars represent the 2-minute time bins, and vertical bars denote 1o statistical uncertainties.
For comparison, the Crab emission is also shown as a lilac dashed horizontal line. The
vertical dot-dashed line divides the data into ’stable’ (i.e., pre-burst) and 'variable’ (i.e.,
m-burst) emission. The horizontal black dashed line represents the average of the 'stable’
emission. The solid black curve represents the best-fit flare model (see eq. [2). The bottom
plots show the mean background rate during each of the 2-minute bins of the LCs. The
insets report the mean background rate during the entire night, resulting from a constant fit
to the data points. The goodness of such fit i1s also given.
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Analysis strategy

» True shape of the time profile at the source is not
known...

» Correct time shift in a spatially-flat universe

-

AY(E) = Hy (E/Mqcy) [ h(2)d>
0
h(z) = QA + Qu(1 + 2)3

» A pulse of electromagnetic radiation propagating through
a dispersive media becomes diluted so that its power (the
energy per unit time) decreases.

» If the parameter Mg, or Mg, is chosen correctly, the
power of the recovered pulse is maximized.



Implementation

» Choose a time interval (t,; t,) containing the most active
part of the flare, as determined using a Kolmogorov-
Smirnov (KS) statistic.

» Time shift is applied to obtain the undispersed signal.
At = +1iE or At = £t E with 1, and 1, having units s/GeV and
s/GeV2.

» Calculate ‘energy cost function’ (ECF) by summing, for

each given 1, or 1., the energies of the photons in the
interval (t;; t,).



Lnergy cost function
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FIG. 1: The energy cost function (ECF') obtained from
one realization of the MAGIC measurements with photon
energies smeared by Monte Carlo, for the case of a vac-
uum refractive index that is linear in the photon energy.
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FIG. 2: The 71 distribution from fits to the ECFs of
1000 realizations of the July 9 flare with photon energies
smeared by Monte Carlo.



Results (1)

» Linear case
1, = (0.030 = 0.012) s/GeV
Mog: = 1.398 X 10'8(1 s/t) = (0.47°031_; ;) X 10'8 GeV,
Mog) > 0.26 X 108 GeV at the 95% C.L.

» Quadratic case
T, = (3.71£2.57) X 107° s/GeV?
Mo, = 1.182 X 108(1 s/t )'2 = (0.61%049_ ) X 10" GeV
Mag, > 0.27 X 10!l GeV at the 95% C.L.



Another technique

» optimize the sharpness of the transformed signal

» Using a likelihood method, we fit the data to a probability
density function (p.d.f.) P(E, t) of the observed energy E
and arrival time t, using variables describing the energy
spectrum ['(E,) at the source, and the time distribution
F,(t,Mqog,) at emission obtained from the measured
arrival times of the photons assuming a non-trivial
refractive index.

» Likelihood function for 7% =k [;” T(E) G(E — E.,0p(E.)) Fu(t.) dEL.
where G is the photon-energy smearing.

» Power-law source EP, 3=2.7 for const, 2.4 for flare



Chi-squared function
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FIG. 3: The x> function for the July 9 flare, which ez-

hibits a quite symmetric parabolic minimum as a function

of 1/1"[QG1 R



Results (2)

» Linear case

The best four-parameter overall fit to the July 9 data yields
Mp/Mqg, = 8.2737_5,, corresponding to Mg, =0.3070-24=0.10 X
10'® GeV

» Quadratic case



Discussion

» Their results exhibit, assuming energy-independent emission at
the source, a sensitivity to MQGI 0.4 X 10'8GeV (> 0.17 X
10'8 GeV at the 95% C.L.), probing the Planck mass range for
the first time.

» The findings also demonstrate a sensitivity to MQG2
0.6 X 10'" GeV (> 0.27 X 10'" GeV at the 95% C.L.), far beyond
previous limits on quadratic effect on photon propagation.

» We cannot exclude the possibility that the delay we find, which
is significant beyond the 95% C.L., may be due to

» We can exclude the possibility that the observed time delay
may be due to a conventional QED plasma refraction effect
induced as photons propagate through the source.

At = D(a?T?/64¢%) In*(¢T /m?2)



