TeV gamma-rays from photodisintegration/de-excitation of cosmic-ray nuclei

L. A. Anchordoqui, J.F. Beacom, H. Goldberg, S. Palomares-Ruiz, T.J. Weiler astro-ph/0611580

Masaki Mori

ICRR CANGAROO group Internal seminar, December 28, 2006

Gamma-ray generation processes

- Electromagnetic (EM)
 - Synchrotron, inverse Compton
- Hadronic (PION)

 $-p + p \text{ (or } p + \gamma) \rightarrow (\pi^0 \rightarrow \gamma \gamma) + X$

- Photo-disintegration/de-excitation (A*)
 - Photonuclear process $A + \gamma \rightarrow A'^* + X$
 - De-excitation $A^{\prime*} \rightarrow A^{\prime} + \gamma$
 - "Double-boost" by $\Gamma_A = E_A^{LAB}/m_A > 10^6$ (eV starlight \rightarrow TeV gamma-ray)
 - Ref. F. Stecker, Phys.Rev.180, 1264 (1969)

F. Stecker, Phys.Rev.180, 1264 (1969)

Photo-disintegration cross section

FIG. 1. Total cross section for the processes $\operatorname{He}^4(\gamma, p)\operatorname{H}^3$ and $\operatorname{He}^4(\gamma, n)\operatorname{He}^3$ as a function of γ -ray energy in the He rest system.

Scenario (1)

- Photo-disintegration of parent A
 Giant Dipole Resonance (GDR)
 - At $\varepsilon_v^{GDR} \sim 10-30$ MeV (rest frame)
 - Ambient photon $\varepsilon = \varepsilon_{\gamma}^{\text{GDR}} / \Gamma_{\text{A}}$
 - Decays by emission of a single nucleon
- De-excitation of daugher (A-1)*
 - Emitting one or more photons
 - $\varepsilon_{\gamma}^{dxn} \sim 1-5$ MeV (rest frame)
 - $\varepsilon_{\gamma}^{\text{LAB}} = \Gamma_{\text{A}} \varepsilon_{\gamma}^{\text{dxn}}$

http://www.kvi.nl/~annrep/ar1997/node5.html

An example of GDR

Figure: Corrected neutron-coincident spectrum.

The total neutron-coincident spectrum was obtained after correcting for multiplicity The Isobaric Analog State (IAS), Gamow-Teller resonance (GTR) and Giant Dipole Resonance (GDR) can clearly be seen.

Scenario (2)

- $\varepsilon \varepsilon_{\gamma}^{\text{LAB}} \sim \varepsilon_{\gamma}^{\text{GDR}} \varepsilon_{\gamma}^{\text{dxn}}$ since $\varepsilon_{\gamma}^{\text{GDR}}, \varepsilon_{\gamma}^{\text{dxn}}$ are distributed (Lorentzian or Breit-Wigner)
- Thus, A* process produces gamma-rays with energy

 $\varepsilon_{\gamma}^{\text{LAB}} \sim \varepsilon_{\gamma}^{\text{GDR}} \varepsilon_{\gamma}^{\text{dxn}}/\varepsilon \sim 20 \text{ TeV/(T/eV)}$ if there exists and accelerated nuclear flux with

boost

 $\Gamma_{\rm A} \sim \epsilon_{\gamma}^{\rm GDR}/\epsilon \sim 7 \times 10^6 (T/eV)$

or equivalent energy

 $E_A^{LAB} \sim 7 \text{ PeV/(T/eV)}$ per nucleon.

Ambient photon

- Bose-Einstein distribution: $\varepsilon \sim 2.82T$
- A* process may dominate in regions which contains far-UV photons.
 - Lyman- α emission of young, massive, hot stars such as O and B stars
 - T_{*}~40,000K (4.6eV) / 18,000K (2.1eV)
 - Shocks, giant winds, etc. may accelerate nuclei above PeV per nucleon
 - Starburst regions such as Cygnus OB associations

Gamma-ray spectrum

- Narrow width approximation for ε_{v}^{GDR} , ε_{v}^{dxn}
- Spectrum follows Bose-Einstein distribution for $\epsilon = \epsilon_{\gamma}^{GDR} \epsilon_{\gamma}^{dxn} / \epsilon_{\gamma}^{LAB}$

$$\frac{dn(\varepsilon_{\gamma}^{LAB})}{d\varepsilon_{\gamma}^{LAB}} \propto (\varepsilon_{\gamma}^{LAB})^{-4} [\exp(\varepsilon_{\gamma}^{GDR} \varepsilon_{\gamma}^{dxn} / \varepsilon_{\gamma}^{LAB} T)]^{-1}$$

8

A* rate (1)

GDR cross section

 $\sigma_{A}(\varepsilon) \xrightarrow{NWA}{2} \sigma^{GDR} \Gamma^{GDR} \delta(\varepsilon_{\gamma}^{GDR} - \Gamma_{A}\varepsilon)$ where $\sigma^{\text{GDR}} = 1.45 \text{A} \times 10^{-27} \text{cm}^{2}$, $\Gamma^{\text{GDR}} = 8 \text{ MeV}$, $\varepsilon_{\gamma}^{\text{GDR}} = 42.65 A^{-0.21} (\text{A} > 4)$ and $0.925 A^{2.433} (\text{A} \le 4)$

Mean free path for a nucleus with energy $\Gamma_{\Delta} m_{\Delta}$ lacksquare $(\lambda_{A})^{-1} \xrightarrow{NWA} \frac{\pi \sigma^{GDR} \varepsilon_{\gamma}^{GDR} \Gamma^{GDR}}{\Delta \Gamma^{2}} \int_{\varepsilon_{\gamma}^{GDR}/2\Gamma_{A}}^{\infty} \frac{d\varepsilon}{\varepsilon^{2}} \frac{dn(\varepsilon)}{d\varepsilon}$ For thermal photons 0.7 0.6 $(\lambda_A^{BE})^{-1} \approx \frac{\sigma^{GDR} \Gamma^{GDR}}{\varepsilon^{GDR}} \left(\frac{T^3}{\pi}\right) w^2 \left| \ln(1 - e^{-w}) \right|$ 0.5 ۵.4 0.3 where $w \equiv \varepsilon_v^{\text{GDR}} / 2\Gamma_A T$. 0.2 0.1 0.5 10 0.1 0.2 2

FIG. 1: The scaling function $f(w) = w^2 \left| \ln \left(1 - e^{-w} \right) \right|$.

A* rate (2)

- Rough estimation: For $\Gamma_A \sim \varepsilon_{\gamma}^{GDR}/T$, $\Gamma^{GDR}/\varepsilon_{\gamma}^{GDR}\sim3$, $(\lambda_A^{BE})^{-1} \approx \sigma^{GDR}T^3/\pi$ Using $n_{\gamma}^{BE} = 2\zeta(3)T^3/\pi^2 \cong T^3/4$ $\lambda_A^{BE} \sim \frac{5 \times 10^{13} \text{ cm}}{A(T/\text{eV})^3} \sim \frac{3\text{AU}}{A(T/\text{eV})^3}$
 - for a nucleus with energy in the peak regime around $E_A \sim 10A$ (T/eV) PeV.
- Multiple steps?

- Unlikely since $D/\lambda <<1$. (D: diffusion scale)

Starburst regions (1)

- Starlight photons: $<\epsilon > 3T_*$
 - Density: $N_* \times 4\pi R_*^2 / 4\pi R_{SB}^2$ (R_{SB} : loss surface of the starburst region)
 - R_{\star} ~10R_☉, R_{SB} ~10pc, N_{\star} ~2600 → 10⁻¹²
 - $-\lambda_{A} \sim (56/A)(2.1 \text{eV}/T)^{3} \times 10^{23} \text{cm}$
 - 95% are B type with $T_* \sim 2.1 \text{eV}$
 - Cyg OB: diffusion time ~ 10^4 yr~ 10^{22} cm \rightarrow A few percent of nuclei photo-disintegrate
- A GDR produce 0.5-2 gamma-rays

- ~One photon per nuclear de-excitation

Starburst regions (2)

• Integral gamma-ray flux at Earth with $\varepsilon_{\gamma}^{LAB}$ above a few TeV (eV/*T*):

$$F_{\gamma} = \frac{V_{A^*}}{4\pi d^2} \frac{1}{\lambda_A^{BE}} F_A$$

- where $F_A(=cn_A)$ is an integral over peak: $A(eV/T)PeV < E_A < 10A(eV/T)$, V_{A^*} is source region volume.
- Cyg OB2: R_{SB} =10pc, $\lambda_A = (56/A) \times 10^{23}$ cm, d=1.7kpc $\rightarrow F_{\gamma}=2\times 10^{-10}$ A F_A
 - Or $f(\text{cm}^{-2}\text{s}^{-1})$ in PeV at Cyg OB2 \rightarrow 10*Af* F_{Crab} in TeV at Earth
 - $f_{56} = 6 \times 10^{-10}$ cm⁻²s⁻¹ to produce 3%Crab as HEGRA, which is ~1% of the kinetic energy budget of Cyg OB2

See accompanying paper: astro-ph/0611581

Accompanying paper: astro-ph/0611581

Cyg OB2

FIG. 3: Photo-disintegration rate of ⁵⁶Fe, ²⁸Si, and ⁴He on the Cygnus OB2 starlight. Solid (dashed) lines represent the simplified (more elaborate) model as described in the text.

FIG. 4: Photo-disintegration rate of 56 Fe on the T = 50 K Cygnus OB2 blackbody radiation as given by Eq. (8).

Primary quanta	γ production mech.	ν production mech.	Number ratio	Energy ratio	comments
А	$A \to A^* \to \sim \overline{n_A} \gamma + A$	$A \to n \to \overline{\nu}_e$	$\gamma: \nu \sim \overline{n_A}: 1/2$	$\frac{E_{\gamma}}{E_{\nu}} \sim \frac{\overline{E_A}}{\epsilon_0}$	observation of $\nu {\rm 's}$ at IceCube
	$[E_{\gamma} \sim \gamma_A \overline{E'_{\gamma A}}]$	$[E_{\nu} \sim \gamma_A \epsilon_0]$		$\sim 4-8$	depends on ${}^{4}\mathrm{He}$ abundance
р	$p \to \pi^0 \to 2 \gamma$	$p \to \pi^{\pm} \to 3 \nu$	$\gamma: \nu \sim 1:3$	$\frac{E_{\gamma}}{E_{\nu}} \sim 2$	$\nu {\rm 's}$ ARE seen at IceCube
	$[E_{\gamma} \sim \frac{1}{10} E_p]$	$[E_{\nu} \sim \frac{1}{20} E_p]$			
e-plasma	synchrotron	none			
	inverse Compton				

TABLE I: Comparison of γ -ray and neutrino emission from A, p, and e primaries. Note that per γ -ray, an order of magnitude fewer neutrinos are expected from nuclei photodisentigration than from hadronic interactions followed by pion decays. Note also that the neutrino energy from the nuclei photo-disintegration is typically about one order of magnitude smaller than the γ -ray energy. When the primaries are electrons, only γ -rays are produced, but not neutrinos.

Energy spectrum

• In rest frame of nucleus, photon is emitted isotropically. In LAB frame:

$$\frac{dn_{\gamma}}{d\varepsilon_{\gamma}^{LAB}} \propto \int d\cos\theta \,\delta \Big[\varepsilon_{\gamma}^{LAB} - \Gamma_{A}\varepsilon_{\gamma}^{dxn}(1+\cos\theta)\Big] = \frac{1}{\Gamma_{A}\varepsilon_{\gamma}^{dxn}}$$

with $1 + \cos \theta = \varepsilon_{\gamma}^{LAB} / \Gamma_{A} \varepsilon_{\gamma}^{dxn}$ which means $\varepsilon_{\gamma}^{LAB}$ distributes in [0, $2\Gamma_{A} \varepsilon_{\gamma}^{dxn}$] evenly.

• Power spectrum $\propto \epsilon_{\gamma}^{\text{LAB}}$, integrate power $\propto (\epsilon_{\gamma}^{\text{LAB}})^2$ – Peaking at $\epsilon_{\gamma}^{\text{LAB}} \sim \epsilon_{\gamma}^{\text{GDR}} \epsilon_{\gamma}^{\text{dxn}}/4T \sim 10 \text{ TeV/(T/eV)}$

Cosmogenic A* process

- Photo-disintegration in propagation of UHE cosmic nuclei with CMB and CIRB
 - CMB: T=2.3×10⁻⁴eV $\rightarrow \lambda \sim A^{-1}$ Mpc for $E_A \sim 4A \times 10^{19}$ eV

- CIRB: larger λ but ~10¹⁶eV

 Cascading gamma-rays: bounded by EGRET <2×10⁻⁶eV/cm³, but contributions from A* process is three orders of magnitude below the bound.