CANGAROO-III and beyond

Masaki Mori* for the CANGAROO team * ICRR, The University of Tokyo

Pre-ICRC workshop: New Generation Cherenkov Imaging Telescopes

1

Aug 1-2, 2005, Mumbai, India

"CANGAROO"

Collaboration of Australia and Nippon for a GAmma Ray Observatory in the Outback

Woomera, South Australia

CANGAROO team

- University of Adelaide
- Australian National University
- Ibaraki University
- Ibaraki Prefectural University
- Konan University
- Kyoto University
- STE Lab, Nagoya University
- National Astronomical Observatory of Japan

Brief history of CANGAROO

- □ 1987: SN1987A
- 1990: 3.8m telescope
- 1990: ICRR-Adelaide Physics agreement
- **1992**: Start obs. of 3.8m tel.
- 1994: PSR 1706-44
- □ 1998: SNR1006
- □ 1999: 7m telescope
- 2000: Upgrade to 10m
- 2001: U.Tokyo-U.Adelaide agreement
- 2002: Second and third 10m tel.
- 2004: Four telescope system

Why Woomera?

- NZ: too wet, not many clear nights
- **Woomera**:
 - Former rocket range and prohibited area...infra-structure and support
 - Adelaide group was operating BIGRAT

ELDO rocket Launch site in '60s

BIGRAT

(BIcentennial Gamma RAy Telescope) ⁵

CANGAROO-II telescope

- Upgraded in 2000 from 7m telescope completed in 1999
- 114 x 80cm CFRP mirror segments in parabola (first plastic-base mirror in the world!)
- Focal length 8m
- Alt-azimuth mount
- 552ch imaging camera
- Charge and timing electronics

CFRP mirror & tuning system

80cmø, 5.5kg

Al-coated polymer sheet metal sheet prepregs foam

prepregs

metal sheet

wave length (nm)

7

Kawachi et al., Astropart. Phys. 14, 261 (2001)

CANGAROO-II camera

- □ 3° FOV
- R4124UV (Hamamatsu)
- **0**.115° pixel
- Lightguide
- 16PMTs/module

CANGAROO-II Electronics

9

CANGAROO-II & -III

Woomera: 2004 March

Basic specifications of telescopes

- Location:
 - 31°06'S, 136°47'E
 - 160m a.s.l.
- □ Telescope:
 - 114× 80cm
 FRP mirrors
 (57m², Al surface)
 - 8m focal length
 - Alt-azimuth mount
- **C**amera:
 - T1: 552ch (2.7° FOV)
 - T2,T3,T4: 427ch (4° FOV)
- Electronics:
 - TDC+ADC

GFRP mirrors and tuning system

Tuning using star images via a CCD camera

Before tuning

After tuning

13

Ohishi et al., ICRC 2003

Spot size

CANGAROO-III camera

R3479 (Hamamatsu)

Lightguide (T1/T234)

	Τ1	T2, T3, T4
FOV	3°	4°
Num.of pixel	552	427
Weight	~110kg	~110kg
Size of PMT	1⁄2″	3/4 "
Pixel arrangement	square	hexagonal
HV polarity	negative	positive
HV supply unit	1ch/16 PMTs	1ch/1 PMT

PMT gain uniformity and linearity

Kabuki et al., Nucl. Instr. Meth. A500, 318-336 (2003)

Lightguide design

Kajino et al., ICRC2001

High voltage control & monitor

Camera calibration

Blue LED flasher at the reflector center

Blue LED flasher in the camera box

Yamaoka et al., ICRC2003

CANGAROO-III Electronics (1)

20

CANGAROO-III Electronics (2)

Discriminator and summing module (DSM)

Trigger logic

CANGAROO-III Electronics (3)

measured with DSM and ADC

Telescope control

Telescope control unit

Star tracking

Star position error observed by a CCD camera

Construction of CANGAROO-III

Sample of 4-fold stereo events

Data: 2004 March

Global trigger system

Before: "software trigger" C Each telescopes triggered independently Now: "hardware stereo" 100m Requires at least 2 telescopes If no coincidence \Rightarrow Reset $\Delta t = d/c < 500$ ns Dead time $\times 1/100$ variable Opt.fiber 650ns 150m Opt.fiber Telescopes lelescopes Turnaround $\sim 2.5 \mu S$ Trigger Wait time Trigger $\sim 5\mu S$ Event 27 Coincidence number

Effect of global triggers

Muon events are removed!

Beyond CANGAROO-III

- In the near future
 - Improvement of old T1 and others
- In the long range
 - No unified plan yet...
 - Started brainstorming, technical and physical considerations...

Where should we go?

A case study: array of telescopes

- How to achieve large effective area in modest cost?
- Large span array with wide cameras?

Lateral distribution of light

Tail is extended beyond 150m!

Array span vs. effective area

- 6° FOV camera
- Gamma-ray energy: 100 GeV, 1 TeV, 10 TeV

33

- CANGAROO-III is a system of 10m imaging Cherenkov telescope build by Japanese-Australian collaboration.
- We have been carrying out 4-telescope stereo observations of sub-TeV gamma-rays since 2004 March. Now we have incorporated a global trigger system to reduce muons.
- We are studying the next-generation telescopes. One option could be a large-span array of telescopes to increase the effective area.