Summary of Astroparticle Physics Working Group (experiments)

Masaki Mori Institute for Cosmic Ray Research, University of Tokyo

21st International Workshop on Weak Interactions and Neutrinos (WIN07), January 15-20, 2007, Saha Institute for Nuclear Physics, Kolkata, India

Astrophysical probes

- Radio/IR/optical/X-ray photons probe (mainly) thermal Universe.
- Non-thermal, violent Universe needs to be explored by other probes.
- General cosmic-rays: lose directional information due to deflection by the Galactic magnetic field
- Probes which keeps directionality
 - Highest energy cosmic rays [1 talk]
 - Gamma-rays [5 talks]
 - Neutrinos [2 talks]
 - Dark matter [1 talk]
 - Gravitational waves [0 talk]

Utilization of directionality at present

Probe	Detector	Δθ	Field of view	
Highest CR	AS array	~1°	~π sr	
	Fluorescense	~1°	~π sr	
Gamma-rays	AS array	~1°	~π sr	
	Atmospheric Cherenkov	~1'	~0.01sr	
Neutrinos	Water/ice Cherenkov	~1°	2π sr	
Dark matter	Nuclear recoil	N/A	4π sr	
Grav. wave	Grav. wave Interferometer		~2π sr	

[Taken from Klas Hultqvist's presentation]

Probes have intrinsic length

GZK neutrino

Not applicable to neutrinos and gravitational waves!

(in other words: these are elusive!)

However, UHE neutrinos are absorbed by Earth! Highest energy cosmic rays: Pierre Auger project

Malargue, Argentina

- 1600 (1200) surface detectors
- 4 (3.9) fluorescence telescopes

Highest energy cosmic rays: Presented by Markus Roth Pierre Auger project: energy spectrum

6

Presented by Markus Roth

Highest energy cosmic rays: Pierre Auger project: new results

Galactic center region

Photon flux limit above 10¹⁹eV

excludes neutron source at the GC

Highest energy cosmic rays: Telescope Array experiment

To be completed in March 2007

Shoichi Ogio (ISVHECRI, Weihai, China 08/2007)

Highest energy cosmic ray detectors in the world

Presented by Klas Hultqvist

High energy neutrinos: IceCube at South Pole

Presented by Klas Hultqvist

High energy neutrinos: IceCube sensitivity

Diffuse muon neutrino flux

Other interests:

•TeV neutrino-gamma connection

•GRB coincidences

•WIMP search

Supernova detection

Presented by Juan A. Aguilar Sanchez

High energy neutrinos: ANTARES

•Mediterranean Sea (42°50'N, 6°10'E) at 2500m depth, in the south coast of Toulon (France).

 4 lines already deployed.

•To be completed in 2007.

Presented by Juan A. Aguilar Sanchez

Sky coverage by neutrino telescopes

NEMO (Capo Passero, Sicily) at a depth of 3500 m)

16 storey towers in 2007

NESTOR (Ionian Sea, Greece at a depth of 4000m)

4 floors in 2007

KM3Net design study started in 2006

Presented by Juan A. Aguilar Sanchez

Neutrino telescopes in the world

Presented by Jodi Cooley

15

Direct search for dark matter

Presented by Jodi Cooley

Direct search for dark matter: CDMS II

Presented by Jodi Cooley

Direct search for dark matter: near future

Comment: Dark matter anisotropy

Dark matter velocity hitting a detector fixed on the Earth surface

$$\vec{v} \approx \vec{v}_{\text{dispersion}} + \vec{v}_{\text{Galactic}} + \vec{v}_{\text{orbit}} + \vec{v}_{\text{rotation}}$$

- $V_{\text{dispersion}} \sim 10^{-3} c$: <u>random</u> motion in halo
- $V_{\text{Galactic}} \sim 7 \times 10^{-4} c$: Galactic rotation
- V_{orbit} ~1.0×10⁻⁴ c: Earth orbit
- *V*_{rotation} ~1.5×10⁻⁶*C*: Earth rotation
- Directional dark matter can detect these motions except v_{dispersion} via anisotropy
 - Ex. Track detectors, anisotropic crystal scintillators,...
 - Information on v_{dispersion} if dark matter mass known

Presented by Goetz Heinzelmann

High energy gamma-rays: H.E.S.S.

Presented by Goetz Heinzelmann

High energy gamma-rays: H.E.S.S. – blazars

EBL: (Extragalactic Background Light)

Blazars (BL Lac) discovered /observed by H.E.S.S.							
	source name	redshift z	discovered	confirmed	flux [crab units]		
	Markarian 421	0.030	Whipple	many	up to 3		
	PKS 548-322	0.067	HESS prelim ~ 5σ		~ 0.01		
	PKS 2005-489	0.071	HESS		~ 0.03		
huge flare 2006	PKS 2155-304	0.116	Mark VI	HESS	up to 15		
	1ES 0229+299	0.139	HESS prelim >6σ		~ 0.02	new	
EBL 🖉 🍽	H 2356-309	0.165	HESS		~ 0.02	confirm/	
density	1ES 1101-232	0.186	HESS		~ 0.02	improve EBL	
	1ES 0347-121	0.188	HESS prelim > 8σ		~ 0.03	< limits	
z? 🕨	PG 1553+113	>0.25?	HESS / MAGIC		~ 0.02		

20

Presented by Goetz Heinzelmann

High energy gamma-rays: H.E.S.S. – other extragalactic objects

Presented by Lowry McComb

High energy gamma-rays: H.E.S.S. – Galactic sources

28 public galactic sources

- Supernova remnants
 - **RX J1713.7-3946**
 - RX J0852.0-4622 (Vela Jr)
 - **G**0.9+0.1

Other or unid

- G12.82-0.02
- Binary systems
 LS 5039
 - PSR B1259-63
- The Galactic Centre
 J1745-290 (Sgr A*)
 Diffuse emission

- Pulsar wind nebulae Crab Nebula Vela X G313.3+0.1 (Rabbit) Kookaburra MSH 15-52 G18.0-0.7 HESS J1825-137 HESS J1809-193 HESS J1718-385 Dark sources HESS J1303-631 HESS J1614-518
 - HESS J1708-410K Bernlöhr

Presented by Lowry McComb

High energy gamma-rays: H.E.S.S. – HESS J1023-575

Positionally coincident with Westerlund 2 Source significance 9σ Extended source Dotted circle = 1σ best fit ▲ = WR20a ▼= WR20b

CR accelerated in bubbles blown by massive stars in ISM?

Westerlund 2

Young stellar cluster Westerlund 2 in HII region RCW 49.

Contains WR20a, a massi∨e Wolf-Rayet binary (both ~70 M_{sun}) and WR20b, another WR.

Presented by Masahiro Teshima

High energy gamma-rays: MAGIC

- •La Palma, Canary Island
- •17m diameter world largest Cherenkov tel.
- •High resolution camera
- •Analogue signal fiber transmission
- •Fast rotation for GRB < 40secs
- •Trigger threshold 40-50GeV
- •Sensitivity ~2.5% of Crab (50hrs)
- •Angular resolution ~0.1 degrees
- •Energy Resolution 20-30%

•MAGIC-II is under construction and will be completed in the fall of the next year to improve sensitivity by factor of two

Presented by Masahiro Teshima

High energy gamma-rays: MAGIC - results

48 45 44 42 40 92 64 65 1 Offert[]

Mrk501 (z=0.034) 1ES2344 (z=0.044)

Mrk 180 (0.045) New source 1ES1959 (0.047) 1ES1218 (z=0.18) PG 1553 (Z>0.25) New Source New source

48-65-04-02-00-02-04-85 Offert [1

RA hours]

25

Mori / LeBohec, Adelaide WS, 2006 Dec High energy gamma-rays: CANGAROO-III / VERITAS

- •Japan-Australia collaboration in Woomera, Australia
- •Four 10m telescopes since 2004 March

- Stereo observation results:
- •Pulsar wind nebula Vela X
- •SNR RX J0852.0-4622
- •NGC 253 (U.L.)
- •Blazar PKS 2155-304 flare

•Mainly US collaboration in Arizona, USA

•Four 12m telescopes almost ready

1996 First Proposal to Smithsonian2000 DOE funds VERITAS R&D2003 March VERITAS funded for 4 telescopes in U.S.by DoE & NSF!

2004 Feb. Prototype Telescope at testsite operational 2004 July site at Kitt Peak approved!

2005 Feb. telescope 1 operational

2005 Tohono O'odham Nation files complaint --> site shutdown

2005 Fall Telescope 1 & 2 start operations @ FLWO basecamp

2006 Decision to built VERITAS-4 at basecamp + operate '07-(09 26

2006 Dec. Kitt Peak site issue still unresolved ...

High energy gamma-rays and cosmic rays: GRAPES-3

•Air shower experiment by Japan-Indian collaboration since 1992 at Ooty, India

- •380 -Plastic Scintillator detectors (1 m² area)
- •3712 -Proportional Counters (6m x 0.1m x 0.1m) deployed in 4 crossed layer configuration as 1 GeV muon detector of area 560 m².
- •15000 m² Ooty Radio Telescope (326 MHz.)

High energy gamma-rays and cosmic rays: GRAPES-3 – some results

Cosmic ray energy spectrum

- GRAPES-3 SIBYLL
- GRAPES-3 QGSJET

Diffuse gamma-rays

Good gamma/hadron separation 28 by muon detectors

Presented by Ramesh Koul

High energy gamma-rays: HiGRO (Himalayan γ-Ray Observatory)

- 7 Element HAGAR (High Altitude GAmma Ray) experiment wavefront sampling telescope
- 21m dia. MACE (Major Atmospheric Cerenkov Experiment) Cerenkov imaging telescope
- □ Site: Hanle, Ladakh (32.7°N, 79°E, 4200m a.s.l.)
 - Limited time for out door work (May-Oct)
 - Road transportation of equipment (May-Oct)
 - 2m optical telescope functioning for 5 years

Presented by Ramesh Koul

High energy gamma-rays: HiGRO / HAGAR

In commissioning phase now

Presented by Ramesh Koul

High energy gamma-rays: HiGRO / MACE

•20GeV threshold, $337m^2$ (=20m ϕ), tessellated parabola •Alt-azimuth mount, ~250t, 45m high

- •1000 pixels camera, GHz digitization electronics, 2m x 2m x 2m
- •Linux based DAQ, capable of handling event rates up to a few kHz •First light expected: June 2010

Rene Ong, ICRC2005 OG2 rapporteur talk

VHE Experimental World

MILAGRO

MILAGRO: A. Abdo, Santa Fe Workshop, May 2006

Diffuse source in Cygnus? (1)

- Crosses are EGRET sources
- Contours are EGRET diffuse model
- TeV/matter correlation good in Galactic latitude
- Brightest TeV Region

Map of Significances

Declination (deg)

Ō

- Coincident with 2 EGRET sources (unidentified) 3EG J2016+3657 3EG J2021+3716
- Analysis in progress

50

100

150

200

Right Ascension (deg)

250

300

350

Tibet: Amenomori et al., Science 314, 439 (2006)

Diffuse source in Cygnus? (2)

(D) and (E) show significance maps of the Cygnus region [pixels in radius of 0.9° and sampled over a square grid of side width 0.25° for (E)] for data from 1997 to 2005. The vertical color bin widths are 0.69 SD and 0.42 SD for significance in (D) and (E), respectively. Two thin curves in (D) and (E) stand for the Galactic parallel $b=\pm5^{\circ}$. Small-scale anisotropies (E) superposed onto the large-scale anisotropy hint at the extended gamma-ray emission.

Diffuse source in Cygnus? (3)

MILAGRO: A. Abdo, Santa Fe Workshop, May 2006 Tibet: Amenomori et al., Science 314, 439 (2006)

	PG 1553+113	238.9294	11.1901	21.909	43.964	Ӊ М	HBL, z>0.25?	17	
	HESS J1614-518	243.5679	-51.8442	331.497	-0.594	As of Oc	tober 18, 2006, Compile	d _{l 8} by	M. M
	HESS J1616-508	244.1033	-50.8964	PATA 39 4,	HAMAAN	√r!icrr.u-t	୦ଞ୍ଜିଷ୍ଣିଅଟି:କାଷ୍ଡିହିନ୍ନ morim/TeV-	dâta	loa.h
	HESS J1 632-478	248.04	-47.82	336.38	-47.82	Н	J	20	- 3
\mathbf{e}	HESE 1034152 1	248.74	-47.27	837.11C	-47.97	TTCP	catalog	21	
U V	HE58 1640-465	250.1829	-40.5319	338.317	-0.021	青上しし	G338.3-0.0?	22	
	Mkn 501	253.4672	39.76004	63.6	38.859	Many	XBL, z=0.034	23 -	
	Name	RA	Decl	GL	GB	Claim	Comment	No.	
	NGC 253	11.888	-25.2882	97.369	-87.964	02, [~] 03, [~] Н	Starburst Gal., z=0.00080	*	
	<u>3C66A</u>	35.66505	43.0355	140.143	-16.767	Or,~HO,~W,~S	QSO, z=0.444	*	
	LSI +61 308	40.13194	61.2293	135.675	1.086	м	Microquasar, P_orb=26.5d. ~2kpc	1	
	PSR 0531+21	83.63288	22.01446	184.557	-5.785	Many	Crab pulsar/nebula	2	
	PSR 0833-45	128.8359	-45.1766	263.552	-2.787	с1, ~н	Vela pulsar	*	
	<u>Vela X</u>	128.3833	-45.7283	263.806	-3.371	н, сз	SNR, G263.9-3.3	З	
	RX J0852.0-4622	132.2458	-45.6333	265.385	-1.181	C2, C3, H	SNR, G266.6-1.2, Vela Jr.	4	
	1ES 1101-232	165.9065	-23.4917	273.189	33.079	н	HBL, z=0.186	5	
	Mkn 421	166.1138	38.20883	179.832	65.031	Many	XBL, z=0.061	6	
	Cen X-3	170.3132	-60.6233	292.09	0.336	D	X-ray binary	7	
	Mkn 180	174.1100	70.1576	131.910	45.641	M	HBL, z=0.045	8	
	1ES 1218+304	185.3414	30.1770	186.359	82.734	м	HBL, z=0.182	9	
	<u>M87</u>	187.7059	12.39112	283.778	74.491	Н	Radio galaxy, z=0.00436	10	
	PSR 1259-63/SS2883	195.6987	-63.8357	304.184	-0.992	Н	PSR/Be binary	11	
	HESS J1 303-631	195.7642	-63.1986	304.241	-0.356	H	UnID, Cen OB1?	12	
	HESS J1 418-609	214.5167	-60.9753	313.247	0.150	н	Kookabura NE wing? PSR J1420-6048?	13	
	HESS J1 420-607	215.0375	-60.7600	313.558	0.268	Н	Kookabura SW wing? Rabbit?	14	
	H1426+428	217.1354	42.67361	77.49	64.899	Many	XBL, z=0.129	15	
	SN1 006	225.5919	-41.8962	327.514	14.642	C1, [~] H	SNR, G327.6+14.6	ж	
	MSH15-52	228.5292	-59.1575	320.330	-1.192	C1, H	SNR, G320.4-1.2, HESS J1514-591	16	
	PG 1553+113	238.9294	11.1901	21.909	43.964	H, M	HBL, z>0.25?	17	
	HESS J1614-518	243.5679	-51.8442	331.497	-0.594	н		18	
	HESS J1 61 6-508	244.1033	-50.8964	332.394	-0.140	н	PSR J1617-5055?	19	
	HESS J1 632-478	248.04	-47.82	336.38	-47.82	H		20	
	HESS J1634-472	248.74	-47.27	337.11	-47.27	H		21	
	HESS J1 640-465	250.1829	-46,5319	338.317	-0.021	H	G338.3-0.02	22	
	Mkn 501	253,4672	39.76004	63.6	38,859	Many	XBL z=0.034	23	
	HESS J1702-420	255.69	-42.07	344.26	-0.22	Н	G344.7-012	24	
	HESS J1708-410	257.06	-41.08	345.67	-0.44	Н		25	
	PSR 1706-44	257.426	-44.4825	343.1	-2.683	C1, D, ~H	3EGJ1710-4439	26	
	RX J1713.7-3946	258.425	-39.7667	347.346	-0.498	C1, C2, H	SNR, G347.3-0.5	27	
	HESS J1 71 3-381	258.49	-38.20	348.65	0.38	н		28	
	HESS J1 745-303	266.26	-30.37	358.71	-0.64	н		29	
	Sor A*	266 41 69	-29.0078	359 944	-0.046	C2 WHM	Gal C [Rogers et al 1994 Ap. 4341 59]	30	
	Galactic Center ridge	266 41 69	-29.0078	359 944	-0.046	H	-0.8< 1<0.8deg lbl<0.3deg	31	
	G09+01	266 8467	-28 1517	0872	0.076	н	SNR	32	
	HESS J1804-216	271.1329	-21.6919	8.408	-0.027	н	G8.7-01 / W802	33	
	HESS J1813-178	273,4079	-17,8428	12.813	-0.034	н. м	SNR AX J1813-178/G12.82-0.02	34	
	HESS J1825-137	276 5150	-13 7633	17.820	-0.743	н	G180-072	35	
	LS 5089	276,5626	-14,8482	16.882	-1.289	H	XRB. HESS J1826-148	36	
	HESS J1834-087	278 71 04	-8 7533	23,258	-0.329	нм	G233-03 / W41 2	37	
	HESS J1837-069	279.4279	-6.9275	25.206	-0.121	н	G25.5+0.0 ?	38	
	1 ES 1959+650	299 9994	6514852	98.003	17.67	UWHOM	XBL ==0.048	39	
	PKS 2005-489	302 3721	-48 821 9	350 386	-32 611	H	XBL 2=0.071	40	
		000.0721	41 50833	80.254	1 074	HC	UnID: Cvg OB22	41	
	TeV. 2032+4130	BIBID22		00.204	1.074	. ~	ON NO. OYZ OLE:		
	TeV J2082+4130	308.0292	-30.2256	1773	-52 246	DH	XBL 7=0117	42	
	TeV J2082+4130 PKS 2155-304	308.0292	-30,2256	17.73	-52.246	D, H	XBL, z=0.117	42	2
	TeV_J2032+4130 PKS 2155-304 Cas A	308.0292 329.7169 350.8529	-30.2256 58.8154	17.73 111.736	-52.246	D, H HC	XBL, z=0.117 SNR, G111.7-2.1	42	30
	TeV_2032+4130 PKS_2155-304 Cas_A BL_Lac Lac	308.0292 329.7169 350.8529 330.6807	-30.2256 58.8154 42.27779	17.73 111.736 92.59	-52.246 -2.13 -10.441	D, H HC ~W, ~HC, Cr	XBL, z=0.117 SNR, G111.7-2.1 z=0.0686	42 43 *	36
	TeV J2032+4130 PKS 2155-304 Cas A BL Lac 1ES 2344+514	308.0292 329.7169 350.8529 330.6807 356.7702	-30.2256 58.8154 42.27779 51.70497	17.73 111.736 92.59 112.891	-52.246 -2.13 -10.441 -9.908	D, H HC [~] W, [~] HC, Cr W	XBL, z=0.117 SNR, G111.7-2.1 z=0.0686 XBL, z=0.044	42 43 * 44	30

R.Ong, rapporteur talk, ICRC2005

"Evolution" in number of objects

Presented by Masahiro Teshima

CTA (Cherenkov Telescope Array)

Presented by Masahiro Teshima

VHE Log(S) - Log(N) plot

Final words

- Mysteries of highest energy cosmic-rays will be solved soon (I hope).
 - Hybrid detectors on both hemeisphere!
- High-energy neutrino sources should come up shortly.
 - They are guaranteed hadronic accelerators!
- Everyone hopes extensive search for Dark Matter will bear fruit in near future.
 - Now they are reaching sensitivities for discovery!
- High-energy gamma-rays are now established astrophysical probes, and efforts to extend frontiers are enthusiastic.
 - Hadronic vs electronic origin: still ambiguous...need more data!
- Evolution of astroparticle physics is fast! Stay tuned!

Thank you!

