CANGAROO

Masaki Mori* for the CANGAROO team * ICRR, The University of Tokyo

Astrophysics of Ultra-High Energy Cosmic Rays, Photons, and ¹ Neutrinos (Miniprogram), May 19, 2005, KITP, UCSB

"CANGAROO"

Collaboration of Australia and Nippon for a GAmma Ray Observatory in the Outback

Woomera, South Australia

CANGAROO team

- University of Adelaide
- Australian National University
- Ibaraki University
- Ibaraki Prefectural University
- Konan University
- Kyoto University
- STE Lab, Nagoya University
- National Astronomical Observatory of Japan

Brief history of CANGAROO

- □ 1987: SN1987A
- 1990: 3.8m telescope
- 1990: ICRR-Adelaide Physics agreement
- **1992**: Start obs. of 3.8m tel.
- 1994: PSR 1706-44
- □ 1998: SNR1006
- □ 1999: 7m telescope
- 2000: Upgrade to 10m
- 2001: U.Tokyo-U.Adelaide agreement
- 2002: Second and third 10m tel.
- 2004: Four telescope system

JANZOS project in New Zealand

<u>Japan Australia New Zealand</u> <u>Observation of Supernova 1987A</u>

Shower particle detector array

Three Fixed Cherenkov telescopes

+

Why Woomera?

- NZ: too wet, not many clear nights
- **Woomera**:
 - Former rocket range and prohibited area...infra-structure and support
 - Adeldaide group was operating BIGRAT

ELDO rocket Launch site in '60s

BIGRAT

(Blcentinnial Gamma RAy Telescope)

6

3.8m telescope: ex. Lunar ranging

Imaging camera at the prime focus

Tadashi Kifune & John Patterson 7

CANGAROO-I results: summary

		Signal	Publish		
-	SND/Dulcar Crab	\cap		H.E.S.S	
•		U	Apjl 94		
	SNR SN1006	0	ApJL'98	¥	
	SNR RX J1713.7-3946	0	A&AL'00	0	
	SNR W28	$\mathbf{+}$	A&A'00	_	
	Pulsar PSR 1706-44	0	ApJL'95	$\mathbf{\Psi}$	
	Pulsar Vela	0	ApJL'97	$\mathbf{\Psi}$	
	Pulsar PSR 1509-58	Δ	ApJ'00	0	
	Pulsar PSR 1055-52	4	(Ph.D.'97)		
	AGNs: PKS0521-365, EX00423.4-0840, PKS2005-489, PKS2316-				
	423	↓	A&A'98		
	Blazars: PKS0548-322, PKS2005-489 a	ind PKS21	55-304		
			A'99		
	Radio galaxy Cen A	♦ (Pr	oc.'99)		

Signal: O detected, \checkmark upper limit, \triangle marginal

PSR 1509-58/MSH15-52

Sako et al., ApJ, 537(2000) 422

CANGAROO-II telescope

- Upgraded in 2000 from 7m telescope completed in 1999
- 114 x 80cm CFRP mirror segments (first plastic-base mirror in the world!)
- Focal length 8m
- Alt-azimuth mount
- 552ch imaging camera
- Charge and timing electronics

CANGAROO-II & -III

CANGAROO-II results: summary

	Signal	Publish	H.E.S.S.
SNR RX J1713.7-3946	0	Nature' 02	0
Blazar Mrk421	0	ApJL'02	0
Starburst galaxy NGC253	0	AAL'03	$\mathbf{\Psi}$
SNR SN1987A	$\mathbf{\Lambda}$	ApJL'03	
Galactic Center	0	ApJL'04	0
Pulsar binary PSR 1259-63/SS2883	$\mathbf{\Lambda}$	ApJ'04	0
SNR RX J0852.0-4622 (Vela Jr.)	0	ApJL'05	0

SNR RX J1713.7-3946

CANGAROO-I (Muraishi et al., 2000)

CANGAROO-II (Enomoto et al., 2002)

Spectrum of RX J1713.7-3946

Galactic Center/Sgr A*

15

Dark matter signal from Sgr A*?

Fig. 2. A summary of data and best-fit models for WIMP annihilation from the Galactic center: H.E.S.S. (open triangles), CANGAROO (open boxes), EGRET (solid and open circles), 10m Whipple telescope of the VERITAS collaboration (solid diamond).

```
Horns, Phys.Lett. B607 (2005) 225
```

PSR 1259-63/SS2883

- (i) aligned disc to the orbital plane and interaction throughout the orbit
- (ii) mis-aligned disc and interaction in the ~200-day period around periastron (τ), during which the radio emission is depolarized
- (iii) mis-aligned disc and interaction in two short periods, $[(\tau - 18 d)]$

CANGAROO-II: Kawachi et al., ApJ, 607(2004) 949 ¹⁷

SNR RX J0852.0-4622

CANGAROO-II: Katagiri et al., ApJ, 619, (2005) L163

H.E.S.S. (Hofmann, Cherenkov2005)

RX J0852.0-04622 spectrum

Woomera: 2004 March

Basic specifications of telescopes

- Location:
 - 31°06'S, 136°47'E
 - 160m a.s.l.
- □ Telescope:
 - 114× 80cm
 FRP mirrors
 (57m², Al surface)
 - 8m focal length
 - Alt-azimuth mount
- **C**amera:
 - T1: 552ch (2.7° FOV)
 - T2,T3,T4: 427ch (4° FOV)
- Electronics:
 - TDC+ADC

Construction of CANGAROO-III

Sample of 4-fold stereo events

Data: 2004 March

Stereo analysis: still underway & in progress

- Inconsistency with H.E.S.S results on some sources
 - ⇒ New observations with CANGAROO III Efforts for advanced analysis procedures
- Measure more optical parameters
 - CCD measurements of spotsizes and stars
- Use muons for calibration
 - Tune Monte Carlo simulation
- Use the Crab as the standard candle
 - Flux obtained with Monte Carlo simulation is compared with those reported by other groups
- Independent teams within the collaboration are working:
 - Hereafter, referred to as Teams A, B, C ...
 - Results, especially detections, are double-checked

Star tracking

Star position error observed by a CCD camera

Spot size

Muon events (1)

- 1) clustering
- 2) R×¢ (arc length) >2deg•rad
- 3) Small χ^2 (good fit)

Data: 2004 March

Muon events (2)

$\Box \ \mathsf{T4} \qquad r[m] \approx 8 \tan \theta_{\mathrm{C}}$

on the focal plane

Muon parameters compared with Monte Carlo

Histogram: data Hatched: M.C.

χ²: for ring fitting(sensitive to spot size)

r: curvature radius

 $(\sim 0.8 \text{ for } v/c=1)$

Size/arclength ∝ total light collection efficiency

Time variation of Size/Arclength

•Monitor of total light conversion efficiency

•Gradually, *Size/Arclength* is decreasing (~5% / year)

•Mirror degradation due to dust etc.

Stereo observation

Unfortunate situation for the Crab

- The oldest T1 has higher energy threshold and bad efficiency for stereo observation
- Only T2/T3/T4 are used for stereo analysis
- Stereo baseline becomes short for the Crab observation at large zenith angles

Large zenith angle observation of the Crab

Crab signal (1)

Team "A" (simple square cuts)

•OFF 7.0hr

34

Crab signal (2)

Team "A"

IP constraint fit

$$\chi^{2} \equiv \sum_{\text{Telescopes}} \left[\left(\frac{\text{Width}(x, y)}{\sigma_{w}} \right)^{2} + \left(\frac{\text{Armlength}(x, y) - \langle \text{Armlength} \rangle}{\sigma_{ARM}} \right)^{2} \right]$$

Search intersection point (IP) by minimizing χ^2 so that width along shower axis to be minimum and armlength to be near the expected value (<Armlength>=0.75, Mesh size 0.025°)

36

γ /h separation by Fisher discriminant

Linear combination of image parameters (x_i)

$$F \equiv \sum_{i} \alpha_{i} x_{i}$$

D Difference between signal (γ) and background (h)

$$D \equiv \left\langle F_{\gamma} \right\rangle - \left\langle F_{h} \right\rangle$$

Determine α_i which maximize separation (solvable using correlation matrix)

$$S \equiv \left\langle D \right\rangle^2 / \left\langle \left(D - \left\langle D \right\rangle \right)^2 \right\rangle$$

37

- With calculated α_i for a known source, the (appropriately normalized) combination *F* could be the "Fisher discriminant" for other sources.
- We use widths and lengths of multiple telescopes for image parameters.

Crab signal (3)

Team "B"

(with IP fit & Fisher D.)

Crab spectrum

Team "B"

(with IP fit & Fisher D.)

•890 min (Dec.2003)

Cen A: the nearest AGN

S. Kabuki

Cen A: flux limit

S. Kabuki

Cen A activity in the past

Turner et al., ApJ 475 (1997) 118

Galactic diffuse emission

Observation of the Galactic disk_{M. Ohishi}

Galactic disk scan result M. Ohishi

45

M. Ohishi, preliminary

Galactic diffuse emission: upper limit

Galactic diffuse emission: "GeV bump"

- Hard cosmic-ray spectrum?
 - Mori, ApJ 478 (1997) 225
- Inverse Compton?
 - Pohl & Esposito, ApJ 507 (1998) 327

□ pp $\rightarrow \pi^0 X$ cross section?

- Diffractive interaction & scaling violation
- Kamae, Abe & Koi, ApJ 620 (2005) 244

Dark gas contribution

- 3EG catalogue may be changed (but not spectra)
- Grenier et al., Science 307 (2005) 1292

Diffractive interaction included

FIG. 5.—Averaged neutral pion multiplicity for the p-p and \bar{p} -p inelastic interaction. Curves are for model A All (solid), model B (dashed), and model A diffractive (dot-dashed). Data are from Table 1 of Dermer (1986).

Kamae, Abe & Koi, ApJ 620 (2005) 244

FIG. 8.—Model gamma-ray spectra including the contributions from bremsstrahlung and inverse Compton and the EGRET data; Data labels are same as in Fig. 7. Model curves are for the bremsstrahlung (Brems) and inverse Compton scattering (ICS) contribution, of GALPROP with parameters galdef 44_500180 in Strong et al. (2004). Other curves are for model A (Trial4GR)+Brems+ICS (*solid*); model A (LIS)+Brems+ICS (*dashed*); π^{0} +Brems+ICS by GALPROP with galdef 44_500180 (Strong et al. 2004; *dotted*).

Dark gas contribution

(old)

EGRET catalogue

(new)

Grenier, Cherenkov2005 poster

SNR RX J0852.0-4622

Team "B"

SN1006

Blank: CANGAROO-I hot spot

Hatched: Off-source

•T2 & T3
•ON 1954min
•OFF 1606min (May 14-26, 2005) 51

Vela pulsar

Team "B"

Global trigger system

Before: "software trigger" C Each telescopes triggered independently Now: "hardware stereo" 100m Requires at least 2 telescopes If no coincidence \Rightarrow Reset $\Delta t = d/c < 500$ ns Dead time $\times 1/100$ variable Opt.fiber 650ns 150m Opt.fiber Telescopes lelescopes Turnaround $\sim 2.5 \mu S$ Trigger Wait time Trigger $\sim 5\mu S$ Event 53 Coincidence number

Effect of global triggers

Muon events are removed!

Summary

- We have been carrying out 4-telescope stereo observations of sub-TeV gamma-rays since 2004 March. Now we have incorporated a global trigger system to reduce muons.
- Stereo analyses are being developed using muons for calibration, and the energy spectrum of the Crab is consistent with other results
- Preliminary results on Cen A and the Galactic disk show no gamma-ray signal. SNR RX J0852.0-4622 appears as extended source, and the morphological study is progressing.
- Observations of SN1006 and Vela pulsar were made by using CANGAROO III telescopes. Very preliminary analyses appear to show no significant signals, which may suggest upper limits lower than the CANGAROO-I fluxes obtained several years ago.