高エネルギーガンマ線 観測の現状と将来

Status and future of high-energy Gamma-ray Astrophysics

宇宙線研究所将来計画に向けた勉強会 2006年4月20日 宇宙線研究所

Detection of gamma-rays (1)

Atmospheric Cherenkov telescopes

Cherenkov light from gamma-ray showers Lateral distribution & Timing distribution

Atmospheric transmission

Imaging Cherenkov Telescopes

Imaging analysis

"Alpha": A.V.Plyasheshnikov and G.F.Bignami, N.C. 1985

WhippleによるCrabの検出

82hrs, $0.24\gamma/\min$

Weekes et al. ApJ 342 (1989) 349

WhippleによるMrk421の検出

Punch et al. Nature 358 (1992) 477

Stereo observation

Detection of gamma-rays (2)

Base	Satellite	Ground	Ground
Gamma-ray	Direct	Indirect	Indirect
detection	(pair creation)	(atmospheric	(shower array)
		Cherenkov)	
Energy	< 30 GeV	>100 GeV	>3 TeV
	$(\rightarrow 100 \text{ GeV})$	$(\rightarrow 50 \text{ GeV})$	$(\rightarrow 1 \text{ TeV})$
Pros	High S/N	Large area	24hr operation
	Large FOV	Good $\Delta \theta$	Large FOV
Cons	Small area	Low S/N (CR	Low S/N (CR
	High cost	bkgd.)	bkgd.)
		(but imaging overcomes this!)	Moderate $\Delta \theta$
		Small FOV	40

Rene Ong, ICRC2005 OG2 rapporteur talk

VHE Experimental World

Rene Ong, ICRC2005 OG2 rapporteur talk

Table 1. Currently operating VHE gamma-ray telescopes. The name of each telescope is given, along with its type (AC=Atmospheric Cherenkov), location, altitude, specifications, and reference at this meeting. The specifications list the currently installed detector area (mirror area for atmospheric Cherenkov and instrumented detector area for air shower). There is no reference at this meeting for the CACTUS telescope.

Experiment	Туре	Location	Altitude	Specifications	Ref.
CACTUS CANGAROO-III HESS MAGIC PACT SHALON STACEE TACTIC VERITAS Whipple	AC-Sampling AC-Imaging AC-Imaging AC-Imaging AC-Sampling AC-Sampling AC-Sampling AC-Imaging AC-Imaging AC-Imaging AC-Imaging	Barstow, USA Woomera, Australia Gamsberg, Namibia La Palma, Spain Pachmarhi, India Tien Shan, Kazakhstan Albuquerque, USA Mt. Abu, India Mt. Hopkins, USA Mt. Hopkins, USA	640 m 165 m 1800 m 2250 m 1075 m 3338 m 1700 m 1400 m 1275 m 2250 m	144 x 42 m2 4 x 57 m2 4 x 110 m2 1 x 226 m2 25 x 4.5 m2 1 x 11 m2 64 x 37 m2 1 x 9.5 m2 2 x 110 m2 1 x 78 m2	[5] [6] [7] [8] [9] [10] [11] [12] [13]
ARGO-YBJ GRAPES-III Milagro Tibet	Air Shower Air Shower Air Shower Air Shower	Yangbajing, Tibet Ooty, India Los Alamos, USA Yangbajing, Tibet	4300 m 2200 m 2630 m 4300 m	$\begin{array}{c} 4000{\rm m}^2\\ 288x1{\rm m}^2\\ 4800{\rm m}^2\\ 761x0.5{\rm m}^2\end{array}$	[14] [15] [16] [17]

Galactic sources: basics

Supernova remnants = Origin of CR?

- Energetics OK (if 10% of E_{SN} goes to CR)
- Maximum energy Up to "Knee region"
- How much of them?
- Some evidences, which can be ascribed to HE electrons: where are HE protons?
- Pulsar and pulsar wind nebula (plerions)
 - Crab "The standard candle"
 - Up to a few 10GeV: pulsed+unpulsed
 - Above: unpulsed only
 - Unpulsed: SSC (Synchrotron-Self-Compton) model
 - Where is the cutoff?
 - (Pulsar emission models)
 - Others?

Particle acceleration in SNR

Non-linear kinetic theory

 $t_0 = R_0/v_0$; sweep up time

Particle spectrum

Berezhko & Voelk, APh 1997

the same cases as in Fig. 1.

Berezhko & Voelk, APh 2000

Cf. Lagage and Cesarsky 1984

14

Nuclear gamma-ray flux from SNR

15

Gamma-ray emission from SNR

Baring et al. 1999 ApJ 513, 311

Pulsar nebula

 A shock is formed when pulsar wind balances with ambient gas pressure, and the wind shines by synchrotron emission by thermalization

K.Mori, talk at ICRR, Dec 2003

The Crab

Optical + X-ray image

Synchrotron Self Compton

Asahara et al., SPIE 2002 18

"Known" galactic sources: Supernova remnants Crab "The standard candle" Well established (many observations since 1989)

- Supernova remnant **RX J1713.7-3946**
 - CANGAROO 2000/2002, H.E.S.S. 2004
- Supernova remnant Cas A
 - HEGRA CT system 2001
- Supernova remnant RX J0852.0-4622
 - CANGAROO 2005, H.E.S.S. 2005
- Supernova remnant **G0.9+0.1** [H.E.S.S. 2005]
- Supernova remnant Vela X [H.E.S.S. 2006, CANGAROO 2006]
- Possible SNRs: G338.3-0.0, G8.7-0.1, G18.0-0.7, G23.3-0.3, G25.5+0.0, AX J1813-178 [H.E.S.S. 2005]
- Pulsar PSR 1706-44, Vela pulsar, SN1006

■ CANGAROO-I claims, but H.E.S.S. upper limits

SNR RX J1713.7-3946 (1)

Gamma-ray signal = (ON) – (OFF)

Detected in X-raysNon-thermal X-ray spectrum

Energy spectrum

Enomoto et al. Nature 416 (2002) 823 20

Significance map

SNR RX J1713.7-3946 (2)

Hard to explain by emission from electrons (Brems, IC) \Rightarrow Emission from protons (π^0) ? \Rightarrow Cosmic ray origin? NANTEN results : Distance ~ 1 kpc Age ~ 1600 yr $\rightarrow L_{\rm p} \sim 10^{48} {\rm erg} \sim 0.001 L_{\rm SN}$ (Fukui et al. PASJ 55, 2003)

Enomoto et al. Nature 416 (2002) 823

SNR RX J1713.7-3946 (3)

Counter arguments

- * Reimer & Pohl, A&A 390 (2002) L43
- * Butt et al., Nature 418 (2002) 489

H.E.S.S.: Aharonian et al., A&A 449, 223 (2006) SNR RX J1713.7-3946 (4)

F. Aharonian et al.: The γ -ray supernova remnant RX J1713.7–3946

Fig. 9. Morphology of RX J1713.7–3946 as it appears at different energies. Shown from left to right are gamma-ray excess images with energies of E < 0.6 TeV, 0.6 TeV < E < 1.4 TeV, and 1.4 TeV < E. Drawn additionally as white lines are contours of significance, linearly spaced at 5, 10, 15 σ (as in Fig. 7). Note the increase in the signal-to-noise ratio with increasing energy. The energy bands were chosen such that each band represents about a third of the full data set (taking events after cuts). Furthermore, all three images were smoothed with a Gaussian of 2', which makes them directly comparable to each other, and to Fig. 7. The resolution in each energy band is indicated in the lower left hand corner of the images; the three data subsets have comparable resolutions of $\approx 0.08^{\circ}$ (the resolution of the intermediate energy band is about 6% better). This might be counter-intuitive, given that at larger energies camera images get bigger and fluctuation effects become negligible thereby improving the energy and direction resolution. However, in this case that effect is compensated by the increasing mean zenith angle of the large-energy events.

9

H.E.S.S.: Aharonian et al., A&A 449, 223 (2006)

SNR RX J1713.7-3946 (5)

F. Aharonian et al.: The y-ray supernova remnant RX J1713.7-3946

CO

Fig. 17. Left panel: Shown are the intensity distribution of CO (J = 1 - 0) emission (Fukui et al. 2003) (linear colour scale in units of K km s⁻¹, truncated at a value of 23 to highlight important features), derived by integrating the CO spectra in the velocity range from -11 km s⁻¹ to -3 km s⁻¹ (which corresponds to 0.4 kpc to 1.5 kpc in space). Overlaid are coloured contours of the H.E.S.S. gamma-ray excess image. The levels are labelled and linearly spaced at 30, 60, and 90 counts. Note that the image is shown in Galactic coordinates. Right panel: Azimuth profile plot, that is, number of counts as a function of the azimuthal angle, integrated in a 0.2°-wide ring covering the shell of RX J1713.7–3946 (dashed yellow circle in the left-hand panel). Plotted are the H.E.S.S. gamma-ray and the NANTEN data set.

15

H.E.S.S.: Aharonian et al., A&A 449, 223 (2006)

SNR RX J1713.7-3946 (6)

Electron origin model

Fig. 19. Broadband SED of RX J1713.7-3946. The ATCA radio data and ASCA X-ray data (Hiraga 2005) for the whole SNR are indicated, along with the H.E.S.S. measurement and the EGRET upper limit. Note that the radio flux was determined in Lazendic et al. (2004) for the northwest part of the shell only and was scaled up by a factor of two here to account for the whole SNR. The synchrotron and IC spectra were modelled assuming a source distance of 1 kpc, an age T of 1000 years, a density n of 1 cm⁻³, and a production rate of relativistic electrons by the acceleration mechanism in the form of a power law of index $\alpha = 2$ and an exponential cutoff of $E_0 = 100$ TeV. Shown are three curves for three values of the mean magnetic field: 7 μ G, 9 μ G, and 11 μ G, to demonstrate the required range of the B field strength for this scenario. The electron luminosity is adopted such that the observed X-ray flux level is well matched. For the three magnetic field values the luminosity L_e is $L_e = 1.77 \times 10^{37}$ erg s⁻¹ (7 μ G), $L_{\rm e} = 1.14 \times 10^{37} \text{ erg s}^{-1} (9 \,\mu\text{G}), \text{ and } L_{\rm e} = 0.81 \times 10^{37} \text{ erg s}^{-1} (11 \,\mu\text{G}).$

Fig. 20. H.E.S.S. data points plotted in an energy flux diagram. They shaded grey band is the systematic error band for this measurement (see Sect. 3.2). The black curve is the best fit of a power law with exponential cutoff to the data, extrapolated to lower energies. The dashed blue curves is the same function, but it takes the π^0 kinematics into account. The EGRET upper limit from 1 GeV to 10 GeV is plotted as red arrow.

$$\Rightarrow$$
 Protons favored (?)

H.E.S.S.: Aharonian et al., A&A 449, 223 (2006)

SNR RX J1713.7-3946 (7)

B. Aschenbach, Nature, 396, 141 (1998)

SNR RX J0852.0-4622 [G266.2-1.2, Vela Jr.](1)

Figure 1 Rosat all-sky survey images of the Vela SNR and its surroundings. Angular resolution is 1 arcmin half-power radius; mean exposure is 993 s. The left-hand image was taken for photon energies 0.1 < E < 2.4 keV; surface brightness increases from dark yellow to white by a factor of 500. The right-hand image is for photon energies >1.3 keV. Most of the Vela SNR X-ray emission which dominates at low energies had disappeared. At the centre, the synchrotron nebula around the Vela pulsar remains visible as well as the SSW beam-like structure, and at the very northwest (upper right) the bright Puppis-A SNR can be seen. The new shell-type SNR RX J0852.0 – 4622 shows up in the lower left. East of RX J0852.0 – 4622 hard X-ray photons from the D/D' Vela SNR shrapnels are seen which, however, are associated with a much lower-temperature spectrum than RX J0852.0 – 4622 (ref. 14). For X-ray spectral analysis, RX J0852.0 – 4622 was divided into two

regions, one containing the bright northern limb section (I) and the other one (r) excluding the northern and southern limbs. Spectral fits were performed with either power-law models, optically thin thermal emission equilibrium models (Raymond-Smith models) or combinations of both. Solutions with a reduced $\chi^2 < 1$ for region r are obtained only with a two-temperature model with $kT_{z1} = 0.14^{+0.05}_{-0.05}$ keV, $kT_{z2} = 2.5^{+0.5}_{-0.7}$ keV. The spectrum of the northern limb can be fitted by either a simple power law with index $\alpha = -2.6^{+0.3}_{-0.04}$ or a two-temperature model with $kT_{U1} = 0.21^{+0.14}_{-0.09}$ keV, $kT_{U2} = 4.7^{+4.5}_{-0.7}$ keV. The presence of low-temperature components may partially be due to a residual, uncorrected contribution from the much softer Vela SNR. The total, absorption-corrected flux of the high-temperature components is $F_x(0.1-2.4$ keV) = 3×10^{-10} erg cm⁻² s⁻¹.

SNR RX J0852.0-4622 (2)

CANGAROO-II: Katagiri et al., ApJ, 619, (2005) L163

Fig. 2. Count map of γ -rays from the direction of RX J0852.0-4622 after background subtraction. The data are smoothed with a Gaussian ($\sigma = 0.1^{\circ}$) representing the angular resolution of the instrument. The point spread function (PSF) is indicated by a circle. γ -ray features smaller than the PSF should not be considered as real. The lines denote equidistant contours of smoothed ($\sigma = 0.1^{\circ}$) X-ray data from the ROSAT All Sky Survey, with energies restricted to above 1.3 keV. The position of the neutron star candidate AX J0851.9-4617.4 is marked with an asterisk. The axes show J2000.0 equatorial coordinates.

H.E.S.S.: Aharonian et al., AA 437, L7 (2005)

SNR RX J0852.0-4622 (3)

CANGAROO-III, In preparation SNR RX J0852.0-4622 (4)

- •Stereo (T2 & T3 wobble)
- •1,204 min. (2004 Jan/Feb)
- •Off region: Vela or out of SNR
- •Distance ~1 kpc (NANTEN: Y.Fukui, private comm.)

Excess event map

H.E.S.S.: Aharonian et al., A&A 432, L25 (2005)

SNR G0.9+0.1

- Compatible with a point source
- Position compatible with the PWN position
- Emission not consistent with the SNR shell

Aharonian et al., ApJ 636, 777 (2005)

H.E.S.S. Galactic plane survey

230 hr, 500 pointings14 new TeV sources + 3known

Scale height ~ 0.3deg RMS

~ molecular gas

H.E.S.S.: Aharonian et al., ApJ 636, 777 (2005)

Other SNRs?

There are many SNRs!

"New" galactic sources

The Galactic center

Whipple 2004, CANGAROO 2004, H.E.S.S. 2004, MAGIC 2006
 Pulsar wind nebulae

 MSH15-52 [CANGAROO 2000, H.E.S.S. 2005]
 Vela X [H.E.S.S. 2005, CANGAROO 2006]

- Pulsar binary PSR 1259-63/SS2883
 - H.E.S.S. 2005
- X-ray binary/microquasar LS5039
 H.E.S.S. 2005

UnID

■ HEGRA J2032+4130

- H.E.S.S. J1303-631
- New H.E.S.S. sources

The Galactic center [Sgr A*]

FIG. 1.— Smoothed sky map of γ -ray candidates (background subtracted) in the direction of the Galactic Center for SIZE ≥ 300 ph. el. (corresponding to an energy threshold of about 1 TeV). Overlayed are green contours (0.3 Jy beam⁻¹) of 90 cm VLA (BCD configuration) radio data (LaRosa et al.) 2000). The white line shows the galactic plane.

MAGIC, ApJ 638, L101 (2006)
Dark matter signal from Sgr A*?

Fig. 2. A summary of data and best-fit models for WIMP annihilation from the Galactic center: H.E.S.S. (open triangles), CANGAROO (open boxes), EGRET (solid and open circles), 10m Whipple telescope of the VERITAS collaboration (solid diamond).

Neutralino-type dark matter: Horns, Phys.Lett. B607 (2005) 225

FIG. 3. The HESS data [3] compared to the gamma-ray flux from a region of 10^{-5} sr encompassing the GC, for a $B^{(1)}$ mass of 0.8 TeV, a 5% mass splitting at the first KK level, and a boost factor *b* around 200 (dashed line). The solid line corresponds to a hypothetical 10 TeV WIMP with similar couplings, a total annihilation rate given by the WMAP relic density bound, and a boost factor around 1000.

Kaluza-Klein dark matter:

Bergstroem et al, Phys.Rev.Lett. 94 (2005) 131301

Pulsar wind nebula MSH15-52

PSR 1509-58

Fig. 1. Smoothed excess map from MSH 15-52 in arbitrary units (a.u.). The map is smoothed with a Gaussian of σ =0.04° and only events with image sizes above 400 p.e. are used in order to improve the H.E.S.S. angular resolution. The white contour lines denote the X-ray (0.6–2.1 keV) count rate measured by ROSAT (Trussoni et al. 1996). The black point and black star lie at the pulsar position and at the excess centroid, respectively. The right-bottom inset shows the simulated PSF smoothed identically.

CANGAROO-I.: Sako et al., ApJ 537, 422 (2000)

H.E.S.S.:

Aharonian et al., A&A 435, L17 (2005)

Vela X nebula

•Pulsar pointing (2004 Jan/Feb)

•Stereo (T2 & T3 wobble)

•1,311 min.

•Fisher discriminant

 θ^2 from Vela X center

CANGAROO-III: R.Enomoto et al., ApJ 638, 397 (2006)

Fig. 1. Gaussian smoothed sky map of region surrounding Vela pulsar, showing significant emission to the south of the pulsar position, coincident with an X-ray feature seen by ROSAT (white contours). The smoothing width used is 0.09°. The contours corresponding to the strong emission close to the pulsar (position I) are truncated. The image inset in the bottom left corner indicates the size of a point source as seen by HESS, for an equivalent analysis. The solid circle represents the HESS integration region for the spectral measurement, while the dashed circle represents the field of view for the ROSAT observations. Position II is marked by a black cross.

H.E.S.S.: Aharonian et al., A&A 448, L43 (2006) ³⁹

Pulsar binary PSR 1259-63/SS2883 (1)

3.4 year highly eccentric orbit around $\sim 10 \text{ M}_{\odot}$ Be star closest approach $\sim 10^{13} \text{ cm}$ or $\sim 20 \text{ stellar}$ radii

- (i) aligned disc to the orbital plane and interaction throughout the orbit
- (ii) mis-aligned disc and interaction in the ~200-day period around periastron (τ), during which the radio emission is depolarized
- (iii) mis-aligned disc and interaction in two short periods, $[(\tau -18 \text{ d}) \sim (\tau \sim -8 \text{ d})]$ and $[(\tau +12 \text{ d}) \sim (\tau +22 \text{ d})]$

CANGAROO-II: Kawachi et al., ApJ, 607(2004) 949

H.E.S.S.: F. Aharonian et al., Astron. Astrophys. 442 (2005) 1

Pulsar binary PSR 1259-63/SS2883 (2)

F. Aharonian et al., Science 309 (2005) 746

X-ray binary/microquasar LS5039

compact 4 (?) M_o object in eccentric 4 day orbit around 20-30 M_o star
 closest approach ~10¹² cm or ~2 stellar radii

What are H.E.S.S. unID sources?

- Near the Galactic plane: SNRs, pulsars?
- Hard spectra: marginally compatible with Fermi acceleration?
- Some may be identified with SNRs.
 J1616-508, J1813-178, J1825-137
- Old SNRs? [Yamazaki et al., astro-ph/0601704]

H.E.S.S.: Aharonian et al., ApJ 636, 777 (2005)

HESS J1616-508

Figure 5.9: Smoothed excess map (left) of the region surrounding HESS J1616–508 (left hand source). HESS J1614–518 is also visible in this map (right hand source), along with nearby pulsars and SNRs which were considered as counterparts (smoothing radius 0.06°). The figures on the right hand side show spectrum (top) and θ^2 (bottom) plot of HESS J1616–508.

HESS J1813-178 = SNR AX J1813-178/G12.82-0.02

(a) VLA 90cm
(b) Spitzer 8µm / VLA 20cm / VLA 90cm

Less IR \leftrightarrow non-thermal

Brogan et al., ApJ 629, L105 (2005)

INTEGRAL 20-100 keV

Ubertini et al., ApJ 629, L109 (2005)

HESS J1825-137 = PWN G18.0-0.7?

XMM: Gaensler et al., ApJ 588, 441 (2003)

Fig. 3. Spectral energy distribution of HESS J1825–137, assuming that the X-ray emission surrounding PSR B1823–13, the EGRET source 3EG J1826–1302 and the new VHE γ -ray source are related. X-ray data, indicated by lines, are taken from Gaensler et al. (2003) and are shown for the two different regions as described in the text. EGRET data (full circles) are taken from the third EGRET catalog (Hartman et al. 1999). The triangles show the HESS data from this work.

H.E.S.S.: Aharonian et al., A&A 442, L25 (2005)

Fig. 1. Excess map of the region close to PSR B1823–13 (marked with a triangle) with uncorrelated bins. The best fit centroid of the γ -ray excess is shown with error bars. The black dotted circle shows the best fit emission region size (σ_{source}) assuming a Gaussian brightness profile. The black contours denote the X-ray emission as detected by *XMM-Newton*. The 95% confidence region (dotted white line) for the position of the unidentified EGRET source 3EG J1826–1302 is also shown. The system acceptance is uniform at the 20% level in a 0.6° radius circle around HESS J1825–137.

Relation with CO/HI?

Figure 1. Multi-resolution filtered and reconstructed images of H.E.S.S.survey sources (the colour scale is arbitrary): (a) HESSJ1614-518 and HESS J1616-508 (b) HESSJ1640-465 (c) HESSJ1813-178 (d) HESSJ1825-137 (e) HESSJ1837-069. Possible counterpart are also indicated. The positional confidence contours for EGRET sources are shown in dash Gray (green), ASCA sources are indicated with crosses. The SNRs are indicated as circles (red) and the molecular cloud contours are shown in white, the numbers show column intensity levels in K.kms⁻¹ units; the pulsars are shown as light Gray squares. Lemiere et al., Proc. ICRC2005

HESS source of the month, 2006 April (website)

"Kookaburra" region

Yamazaki et al., astro-ph/0601704

Old SNRs: large $F_{\rm TeV}/F_{\rm X}$

Dim in X: HESS unID?

Extragalactic sources: basics

Active galactic nuclei

- Blazars
 - Wide-band spectrum nonthermal
 - Quasars LBL (RBL) HBL (XBL) sequence
 - Leptonic models
 - SSC or EC (External Compton)
 - Hadronic models
 - Proton-initiated cascades
- Radio galaxy,...
- Gamma-ray absorption by EBL (Extragalactic Background Radiation)
 - Infrared photon field: uncertain
- Center of galaxies
 - Accumulation of dark matter??
- Extragalactic background radiation

Blazars

"Known" extragalactic sources

■ Mrk421 (z=0.031)

- First detection in 1992 [Punch et al. Nature 1992]
- Flares in 1994, 1996, 2001, 2002-3
- Mrk501 (z=0.034)
 - First detection in 1995 [Quinn et al. ApJ 1996]
 - Large flares in 1997
- 1H1426+428 (z=0.129)
 - First detection in 2001 [Horan et al. 5th Compton 2001]
 Flares in 2001

Multiwavelength spectra of blazars

Fig. 1. Simultaneous and non-simultaneous X-ray and TeV γ -ray energy spectra of the 4 TeV blazars with measured TeV γ -ray energy spectra. The regions show the range of values that have been observed with BeppoSAX, RXTE and Cherenkov Telescopes (from (46)).

Krawczynski, astro-ph/0309443

Synchrotron self-Compton model

Takahashi et al. ApJ 542, 2000

Synchrotron proton blazar model (1)

Muecke et al. APh 18, 2003

Synchrotron proton blazar model (2)

56

TeV gamma-ray absorption on EBL (1)

Dwek, "Universe Viewed in Gamma-rays", Kashiwa, 2002

 $\gamma_{\rm TeV} + \gamma_{\rm IR} \rightarrow e^+ + e^-$

Mean free path for e⁺e⁻ pair production

Figure 2: Mean free path for photon-photon pair production in the infrared-microwave background radiation. The curves correspond to those in Fig. 1 except that the effect of Lorentz Invariance violation discussed in Section 4 is shown by the long dashed curve.

57 Protheroe & Meyer, Phys.Lett. B493 (2000) 1

W.Hofmann, ICRC2005

TeV gamma-ray absorption on EBL (2)

W.Hofmann, ICRC2005

EBL Spectra

R.Ong, Rapporteur talk, ICRC2005

AGN summary

Source	Redshift	Туре	First detection	Confirmation
M87	0.004	FR I	HEGRA	H.E.S.S.
Mrk 421	0.031	BL Lac	Whipple	Many
Mrk 501	0.034	BL Lac	Whipple	Many
1ES 2344+514	0.044	BL Lac	Whipple	HEGRA
1ES 1959+650	0.047	BL Lac	7TA	Many
PKS 2005-489	0.071	BL Lac	H.E.S.S.	
PKS 2155-304	0.116	BL Lac	Durham	H.E.S.S.
H1426+428	0.129	BL Lac	Whipple	Many
H2356-309	0.165	BL Lac	H.E.S.S.	
1ES 1218+304	0.182	BL Lac	MAGIC	
1ES 1101-232	0.186	BL Lac	H.E.S.S.	

\Rightarrow Reaching further out in redshift!

TeV gamma-ray absorption on EBL (3)

61

H.E.S.S.: F. Aharonian et al., Astron. Astrophys. 446, L19 (2006)

PG1553+113: even further away?

BL Lac, z >0.25 (possibly >0.78 ?)

Fig. 2. The energy spectrum of PG 1553+113. The horizontal error bars indicate the energy bin size. The dashed line represents the best χ^2 fit of a power law.

Fig. 3. The intrinsic photon index of PG 1553+113, with 1σ statistical error contours, versus redshift for the cases of *minimal* and *maximal* EBL absorption. An intrinsic photon index below the horizontal line ($\Gamma_{int}=1.5$) is not considered realistic. The uppermost (dashed-dotted) curve is the sum of the intrinsic photon index and 2σ statistical error for the case of minimal EBL absorption.

 \Rightarrow Upper limit: z < 0.74

Cf. Conservative limit from non-detection of features by VLT: z>0.09 Sbarufatti et al., astro-ph/0601506

Costamante and Ghisellini A&A 384 (2002) 56 TeV blazar population

63

Redshift distribution of blazars

C. Dermer, GLAST LAT AGN Science Group meeting, March 4, 2006

Model Fit to Blazar Redshift Distribution Present IACTs 60 Fit parameters for the BL Num berofsources 50 FSRQ 40 30 Fit parameters for the BL 20 10 0 0.5 1.5 2.5 3.5 1 2 3 0

FSRQs are $\Gamma = 8$ and comoving directional luminosity l = 10⁴⁰ ergs sr⁻¹ s-1: EC statistics

Lacs are $\Gamma = 5$ and $l = 10^{42}$ ergs sr-1 s-1; syn/SSC statistics

Galactic diffuse gamma-rays (1)

EGRET >100MeV

Cygnus

>90% of EGRET-detected photons are diffuse!

Vela

0

Geminga/Crab

R.Ong, Rapporteur talk, ICRC2005

Galactic diffuse gamma-rays (2) OG 2.1: Diffuse γ-ray Sources

1. Galactic Plane

Milagro [Sinnis] ~ 4.5σ detection in 3 yr data set. Inner region:

40-100° in longitude, \pm 5° in latitude

Tibet [Ohnishi] Flux upper limit, consistent with Milagro detection.

H.E.S.S.: F.Aharonian et al., Nature 439, 695 (2006) Diffuse gamma-rays along the plane (1)

Figure 1 | VHE γ -ray images of the Galactic Centre region. a, γ -ray count map; b, the same map after subtraction of the two dominant point sources, showing an extended band of gamma-ray emission. Axes are Galactic latitude (x) and Galactic longitude (y), units are degrees. The colour scale is in 'events' and is dimensionless. White contour lines indicate the density of molecular gas, traced by its CS emission. The position and size of the composite supernova remnant G0.9+0.1 is shown with a yellow circle. The position of Sgr A* is marked with a black star. The 95% confidence region for the positions of the two unidentified EGRET sources in the region are shown as dashed green ellipses20. These smoothed and acceptance-corrected images are derived from 55 hours of data consisting of dedicated observations of Sgr A*, G0.9+0.1 and a part of the data of the HESS Galactic plane survey²¹. The excess observed along the Galactic plane consists of \sim 3,500 γ -ray photons and has a statistical significance of 14.6 standard deviations. The absence of any residual emission at the position of the point-like γ -ray source G0.9+0.1 demonstrates the validity of the subtraction technique. The energy threshold of the maps is 380 GeV, owing to the tight γ -ray selection cuts applied here to improve signal/noise and angular resolution. We note that the ability of HESS to map extended y-ray emission has been demonstrated for the shell-type supernova remnants RXJ1713.7-3946 (ref. 22) and RX J0852.0-4622 (ref. 23). The white contours are evenly spaced and show velocity integrated CS line emission from ref. 11, and have been smoothed to match the angular resolution of HESS.

H.E.S.S.: F.Aharonian et al., Nature 439, 695 (2006) Diffuse gamma-rays along the plane (2)

Figure 3 | **Energy distribution of Galactic cosmic rays.** γ -ray flux per unit angle in the Galactic Centre region (data points), compared with the expected flux, assuming a cosmic-ray spectrum as measured in the solar neighbourhood (shaded band). The spectrum of the region $|l| < 0.8^{\circ}$, $|b| < 0.3^{\circ}$ is shown using full circles. These data can be described by a power law: $dN/dE = k[E(in \text{ TeV})]^{-\Gamma}$, with $k = (1.73 \pm 0.13_{\text{stat}} \pm 0.35_{\text{sys}}) \times$ $10^{-8} \text{ TeV}^{-1} \text{ cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$ and a photon index $\Gamma = 2.29 \pm 0.07_{\text{stat}} \pm 0.02_{\text{svs}}$. The shaded box shows the range of expected π^0 -decay fluxes from this region assuming a cosmic-ray spectrum identical to that found in the solar neighbourhood and a total mass of $1.7-4.4 \times 10^7$ solar masses in the region $|l| < 0.8^{\circ}$, $|b| < 0.3^{\circ}$ estimated from CS measurements. Above 1 TeV an enhancement by a factor of 3-9 relative to this prediction is observed. Using independent mass estimates derived from submillimetre measurements²⁴, 5.3 \pm 1.0 \times 10⁷ solar masses, and from C¹⁸O measurements²⁵, 3⁺²₋₁ \times 10⁷ solar masses, results in enhancement factors of 4-6 and 5-13, respectively (see Supplementary Information). The strongest emission away from the bright central source HESS J1745-290 occurs close to the Sgr B complex of giant molecular clouds²⁶. In a box covering this region $(0.3^{\circ} < l < 0.8^{\circ}, -0.3^{\circ})$ $< b < 0.2^{\circ}$), integrated CS emission suggests a molecular target mass of $6-15 \times 10^6$ solar masses. The energy spectrum of this region is shown using open circles. The measured γ -ray flux (>1 TeV) implies a high-energy cosmic-ray density which is 4-10 times higher than the local value. Standard γ-ray selection cuts are applied here, yielding a spectral analysis threshold of 170 GeV. The spectrum of the central source HESS J1745-290 is shown for comparison (using an integration radius of 0.14°). All error bars show ± 1 standard deviation.

R.Ong, Rapporteur talk, ICRC2005

Diffuse source in Cygnus?

OG 2.1: Diffuse γ-ray Sources

2. Cygnus Region

TeV 2032+4130 (deg) ×1000 Declination (ractional Excess PSF 38 36 34 30 21h00m 20h40m 20h20m 20h00m 19h40m RA

HEGRA

Milagro [Smith] All-sky survey – for extended sources. Cygnus region: most luminous in N. sky. Significance ~ 7σ .

Milagro excess (color). EGRET diffuse model (contours).

Gamma Ray Bursts

Ground-based experiments?

TeV gamma-rays (afterglow)
 MAGIC a few per year expected

- Air shower rate
 - Tibet-III
- Single particle rate
 - GRAND
 - ARGO-YBJ
 - Tibet-III
- All-sky monitorAshra
- Need fast and precise GRB alerts!

Line

Dark matter annihilation

Signal enhancement due to `cusp' structure toward the center? "Explosive annihilation" by non-perturvative effect

Continuum

Flux (cm⁻²sec⁻¹) $\Delta\Omega = 10^{-3}$ 10^{4} 10^{-9} Photon energy (GeV) MAGIC **CANGAROO-III** 10^{-17} VERITAS HESS $1\bar{0}^{11}$ 10^{-15} 10^{2} 10^{-13} $1\bar{0}^{13}$ 10^{-11} 10^{15} 10^{-9} C/V/H large zenith angle 0.1 10 0.1 10 m (TeV) m (TeV)

R.Ong, rapporteur talk, ICRC2005

Source counts

Source Type*	2003	2005
Pulsar Wind Nebula (e.g. Crab, MSH 15-52)	1	6
Supernova Remnants (e.g. Cas-A, RXJ 1713)	2	6
Binary Pulsar (B1259-63)	0	1
Micro-quasar (LS 5039)	0	1
Diffuse (Cygnus region)	0	1
AGN (e.g. Mkn 421, PKS 2155)	7	11
Unidentified	2	6
TOTAL	12	32

* Includes likely associations of HESS unid sources.

 \rightarrow Explosion in the number of VHE sources.
R.Ong, rapporteur talk, ICRC2005

"Evolution" of the TeV gamma-ray sky

The VHE Sky - 2005

GeV vs TeV

Thrid EGRET catalog: Hartman et al, ApJS 123, 79 (1999)

R.Ong, rapporteur talk, ICRC2005

"Evolution" in number of objects "Kifune Plot"

75 Page 66

Large area left unexplored at TeV

S. Funk, ICRC2005

Near future

Which Direction Should We Go?

VERITAS: VERITAS-4 by 2006

McMath-Pierce New site: Horseshoe canyon, Kitt Peak, Arizona

Smithonian Inst. etc.

Prototype (Aug '03)

78

Nov 2005: New Environmental Assessment

Oct 2006: Completion of Phase I: 4 telescope array

Then VERITAS-7 in 200X

M. Punch, Cherenkov2005

H.E.S.S.-II

Khomas highland, Namibia (1800m a.s.l.)

Φ~28 m

 $(600m^2)$

Parabolic

THE NEXT STEP IN BOTH DIRECTIONS: HESS-II

Lower threshold and increased energy range

in stand-alone mode

Improved sensitivity at higher energy

- in coincidence mode
- Turn-over of spectra for VHE sources
- Pulsars, Microquasars, ...
- Unidentified sources
- AGNs and cosmology; redshift coverage
- GRBs
- Dark matter

OV 2005, APRII

 $E_{thr} \propto \left(\sqrt{A \epsilon / B \Omega \Delta t} \right)^{-1}$

A mirror area, Ω angular size ϵ photon detection efficiency *B* night-sky noise Δt integration window To lower energies...

M. Teshima, Cherenkov2005

MAGIC-II and III

Canary island (2200m a.s.l.)

MACE

Hanle, North India (4200m a.s.l.): 2010?

Midsized-telescope arrays

Many conceptual designs: for example,

HE-ASTRO

Because the size of the HE-ASTRO, ~1 km², is much larger than the size of the Cherenkov light pool, ~10⁸ cm², the number of telescopes required is > 200

T. Weekes, Energy Budget in the High Energy Universe, 2006 Coupling distance: d=80m

To wider sky coverage...

Wide-field optics

GAW (Gamma Air Watch)

•Flat, single-side lens Lens Diameter = 2.1 m •Focal length = 2,5 m •f/# = 1.2 •Field of view = ± 12 deg.

Mineo et al., NewHEGE3, 2005

ASHRA

- Optics:
 - Modified Baker-Nunn
- Components:
 - Correcting lens (1.0~1.2m) with 3 acrylic cut plates
 - Spherical mirror (2.2m
 ⁽²⁾) with 7 curved glass plates on adjustable tables.
 - Photoelectric lens IT (0.5m) on focal sphere suspended with Stewart platform mechanism
 - Mount structure with steel channels for easy assembly

=> arcmin. resolution over 42deg FOV > Affordably cost-effective

M.Sasaki, Energy Budget in the High Energy Universe, 2006

G. Sinnis, Cherenkov2005

Particle detector: HAWC

- 300m x 300m pond
- Wide FOV: ~2sr
- 100% duty cycle
- Build pond at extreme altitude (Tibet 4300m or Chile 5200m)
- Incorporate new design
 - Optical isolation between PMTs
 - Larger PMT spacing
 - Deeper PMT depth (in top layer)

~\$20M for complete detector

~60x sensitivity of Milagro – instantaneous sensitivity of Whipple over 2 sr Crab Nebula in 30 minutes (now 1 year) GRBs to redshift of >1 (now 0.4)

International coordination

Monitoring of time-variable objects (e.g. blazars)
Multiwavelength observation campaign

An example: MAGIC & H.E.S.S. campaign on Mrk 421

- Mrk 421 had the most active known period during 2004
- MAGIC has observed this object for ~14 hours in different emission states (total significance of the detection is above 40σ)
- MAGIC and HESS first combined observation of AGN Mrk421 during December 2004

Mrk421

Summary

- Very high energy sources may contain large varieties, including both galactic and extragalactic objects.
- Supernova remnants are confirmed to be very-high-energy particle accelerators: an important evidence of cosmic ray origin!
- TeV gamma-ray astronomy is becoming an indispensable field of astronomy.
- The "third generation" Cherenkov telescopes are working hard (and "fourth" ones are planned)— more fun!