Hypernova and Gamma-ray Burst Remnants as TeV Unidentified Sources

Kunihito Ioka & Peter Mészáros arXiv:0901.0744 [astro-ph.HE]

Masaki Mori

ICRR CANGAROO group internal seminar, February 5, 2009

TeV unIDs

- I. So far $N_{unID} \sim 10-30$ TeV unIDs have been observed.
- They generally lie close to the Galactic plane, suggesting a Galactic origin.
- 3. They are extended, $\Delta \Omega \sim 0.05 0.3^{\circ}$.
- 4. The flux is $\varepsilon_{\gamma}F_{\varepsilon_{\gamma}} \sim 10^{-12} \cdot 10^{-11}$ erg s⁻¹ cm⁻² at $\varepsilon_{\gamma} \sim 0.2$ TeV.
- 5. They have a power-law spectrum with index of 2.1-2.5.
- 6. Some TeV unIDs have strong upper limits in X-rays with a TeV to X-ray flux ratio of $F_{\text{TeV}}/F_X > \sim 50$ from Suzaku (Matsumoto et al. 2007; Bamba et al. 2007) and in radio with $F_{\text{TeV}}/F_{\text{radio}} \sim 10^3$ (Atoyan et al. 2006; Tian et al. 2008).

Energetics of TeV unIDs

- Cosmic-ray accelerators as possible origin: ex.
 Supernova remnants (SNRs)
- Required galactic energy budget
 4πd² ε_γF_{εγ} N_{unID}
 ~10³⁴⁻³⁵(d/10kpc)² erg s⁻¹
- Supernovae
 10⁵⁰erg / 100yr
 ~ 10⁴¹erg s⁻¹
- TeV unIDs are a rarer type of source!

Hypernovae and low-luminosity GRBs

- Long GRBs rare SNe with relativistic jets, expected to leave GRB remnants
- Hypernovae (~100 E_{SN}), sometimes associated with GRBs, occur more frequently than GRBs.
 - Ex. SN1998bw/GRB980425, SN2003dh/GRB030329, SN2003lw/GRB031203
 - Rate is even higher if we are missing GRBunassociated HN (ex. SN1996ef)
- Low-luminosity GRBs with slower or semirelativistic jets may be a large fraction of SNe.
 - Ex. GRB980425/SN1998bw, GRB060218/SN2006aj

Hypernova: the origin of the most dangerous gamma-ray bursts?

Models

I. π^0 decay model

- pp interaction by accelerated CRs
- 2. β decay model
 - β decay of the neutron component of the CR outflow accelerated by the jets followed by inverse Compton scattering
- 3. Radio-isotope (RI) decay model New!
 - Lorentz-boosted MeV decay gamma-rays of accelerated RI

Hypernova shocks – π^0 decay model

- π^0 from pp interaction between ISM and CRs accelerated by SN/HN shocks
 - Leptonic models may predict too much synchrotron emission.
- Flux scaled from SN case $\epsilon_{\gamma}F_{\epsilon_{\gamma}} \sim 10^{-12} \zeta_{-1}E_{51}nd_{10kpc}^{-2} \text{ erg s}^{-1}\text{ cm}^{-2}$ $\zeta_{-1} = (\zeta / 0.1)$: fraction of CR energy per log interval, *n*: ISM density (cm⁻³), $E_{51} = E_{CR} / 10^{51} \text{ erg}$, $d_{10kpc} = d/10kpc$
- Time independent sources could be old: $t_{age} \sim 10^5 \text{yr}$
 - Electrons lost their energy until now.

Hypernova remnant candidate W49B

FIG. 1.— Flux from the π^0 decay via pp interactions between the ISM and CRs accelerated by the hypernova shocks, compared with the Fermi and HESS sensitivities. We assume a remnant of age $t_{age} = 10^5$ yr at d = 10kpc with a CR energy $E = 3 \times 10^{51}$ erg and the CR spectral index p = 2.2in the energy range $m_p c^2 < \varepsilon_p < 10^5 m_p c^2$. We also show the synchrotron emission from π^0 decay positrons and electrons for $B = 3\mu$ G, compared with the observational upper limits for an X-ray to TeV flux ratio of 10^{-2} and a radio to TeV flux ratio of 10^{-3} . We use a code of Kamae et al. (2006) for calculating pp interactions.

Observed number of HN remnants

Flux sensitivity to an extended source (radius r)

$$F_{\varepsilon_{\gamma}}^{\text{extended}} = F_{\varepsilon_{\gamma}}^{\text{point}}(r/d\theta_{\text{cut}})$$
$$\therefore F_{\varepsilon_{\gamma}}^{\text{point}}(r/d\theta_{\text{cut}}) < F_{\varepsilon_{\gamma}} \propto E n d^{-2}$$

- Max. distance to a source: $d_{\text{max}} \propto E n r^{-1}$
- Observable volume in Galactic disk: $V \propto d_{max}^{2} \propto E^{2} n^{2} r^{-2} \propto E^{8/5} n^{12/5}$, where $r \propto E^{1/5} n^{-1/5} t_{age}^{2/5}$
- Observed number of HN remnants (note E_{HNR}~10E_{SNR})

 $\frac{N_{HNR}^{obs}}{N_{SNR}^{obs}} \sim \frac{R_{HNR}V_{HNR}}{R_{HNR}V_{HNR}} \sim \frac{10^{-4} \,\mathrm{yr^{-1} \cdot 10^{8/5}}}{10^{-2} \,\mathrm{yr^{-1} \cdot 1^{8/5}}} \sim 0.4$

- Angular size of old (10⁵yr) HN remnants: r/d~30pc/d~0.2°(d/10kpc)⁻¹
 - Cf. SNR $r/d \sim 2^{\circ}(d/1 \text{ kpc})^{-1}$ (\rightarrow more extended SNRs?)
- Density around HN could be larger for star forming regions (but they may be runaway massive stars with no enhancement).

GRB jets – β decay model

- A fraction of SNe/hypernovae is associated with long GRB and their jets.
- (Time-delayed) β decay of the neutron component of the CR outflow accelerated by the jets followed by inverse Compton scattering. [W49B case: loka et al. 2004, ApJ / MM 23-AUG-2004]
- Jet-like emission would appear outside of the SNR, since β decay can occur outside the remnant.
- Old (~10⁵yr) jet remnants could be TeV unID sources (electrons go down since t_{cool}~10⁵yr).
- Expected total number is 0.1-1 for a Galactic GRB rate of ~10⁻⁵-10⁻⁶ yr ⁻¹.
- Optimistic rate consistent with the late-time radio observations is ~10⁻⁴ yr ⁻¹ (~10% of the SN lbc rate), yielding a total number of ~10, because a larger fraction of SNe may have lower-luminosity (LL) jets that were not identified.

 β decay model

FIG. 2.— Flux from the IC scattering of CMB photons by the β decay electrons via the CR neutron component in the GRB jets, compared with the Fermi and HESS sensitivities. We assume a remnant of age $t_{age} = 10^5$ yr at d = 10 kpc with a CR energy $E = 3 \times 10^{51}$ erg [i.e., an old remnant version of Model (I) in Ioka et al. (2004)] and a CR Lorentz factor $10^6 < \gamma_n < 10^9$. We also show the synchrotron emission from β decay electrons for $B = 3\mu$ G, compared with observational upper limits for an X-ray to TeV flux ratio of 10^{-2} and a radio to TeV flux ratio of 10^{-3} .

10

GRB jets – radio-isotope (RI) decay model

- Features
 - Composition of jet is unknown ⁵⁶Ni, ⁵⁶Co?
 - ▶ HN/SN shock→explosive nucleosynthesis→⁵⁶Ni production →accretion and ejection by central engine
 - Photodisintegration
 - Suppressed in LL jets (temperature < ~MeV)</p>
 - Reproduced in a cooling wind if disintegrated [MacFadyen 2003]
 - GRB-associated HN may be ⁵⁶Ni-rich [Maeda&Nomoto 2002]

RI Decay

- $\begin{array}{l} \textbf{If nuclei are fully ionized,} \\ {}^{56}\text{Co} \rightarrow {}^{56}\text{Fe}^* + e^+ + \nu_e \left[\tau_{iCo} \sim 5\tau_{Co} \right] \left[\text{Cf. } \tau_{iNi} \text{In2=3} \times 10^4 \text{yr} \right] \\ {}^{56}\text{Fe}^* \rightarrow {}^{56}\text{Fe} + \gamma (\epsilon_{RI} \sim 2\text{MeV}) \end{array}$
- In expanding jet: ⁵⁶Ni \rightarrow ⁵⁶Co \rightarrow ⁵⁶Fe can start

RI decay model – cont.

• ⁵⁶Co flux by shock (Lorentz factor Γ) acceleration

- Shock radius < Co decay length: $r < ct_{Co} \ln 2 \beta \Gamma$
- Shock radius > Ni decay length: $r > ct_{Ni} \ln 2 \beta \Gamma$
- ► Jet energy $E_j = (4\pi/3)r^3 nm_p c^2 \beta^2 \Gamma^2 \therefore 2E_{j,51}^{1/5} n^{-1/5} < \beta \Gamma < 8E_{j,51}^{1/5} n^{-1/5}$
- Observed mean lifetime: $t_{\gamma} = \gamma t_{iCo} \sim 10^5 \text{yr} \gamma_5$
 - $t_{iCo} = 5t_{Co}$: lifetime of ionized ⁵⁶Co
- Observed boosted gamma-ray energy: $\varepsilon_{\gamma} = \gamma \varepsilon_{RI} \sim 0.2 \text{TeV} \gamma_5$
- The ratio of gamma-ray energy to the ⁵⁶Co CR energy: $f = \varepsilon_{\gamma} / 56m_{p}c^{2} \sim 4 \times 10^{-5}$

 $\bullet \text{ Gamma-ray flux: } \varepsilon_{\gamma} F_{\varepsilon_{\gamma}} = f \zeta E / (4\pi d^2 t_{\gamma}) \sim 10^{-12} \text{erg s}^{-1} \text{cm}^{-2} \zeta_{-1} E_{51} / (\gamma_5 d_{3 \text{kpc}}^2)$

Rate

- The total source number is 0.1-1 for a Galactic GRB rate of 10⁻⁵-10⁻⁶ yr⁻¹, while the most optimistic number is ~10 for a rate consistent with the late-time radio observations 10⁻⁴ yr⁻¹ (~10% of SN lbc rate)
- ▶ We can detect a fraction (3kpc/10kpc)²~0.1 of these sources.

RI decay model – cont.

Maximum energy

- ▶ The shocked ⁵⁶Co is accelerated to a power-law spectrum
- $dN_{Co} \propto \varepsilon_{Co}^{-p} d\varepsilon_{Co}$ for $\varepsilon_{Co,max}$. The maximum energy can be $\varepsilon_{Co,max} \sim 3 \times 10^{17}$ eV (e.g., Murase et al. 2008), which provides $\varepsilon_{\gamma,max} \sim f \times (3 \times 10^{17} \text{eV}) \sim 10$ TeV decay gamma-ray.
- The Larmor radius of ⁵⁶Co CRs is $4(\epsilon_{Co}/10^{17} \text{eV})B_{-6}^{-1}$ pc
 - ightarrow isotropic emission of decay gamma-rays
- Energy spectrum

$$\varepsilon_{\gamma} F_{\varepsilon_{\gamma}} = \varepsilon_{\gamma}^{-p+1} \exp(-\varepsilon_{p} / \varepsilon_{\gamma})$$

$$\varepsilon_{p} = \varepsilon_{IR} (t/t_{iCo}) \sim 0.2 \text{TeV}(t/10^{5} \text{yr})$$

- Softer than parent CRs, because low-energy CRs decay: $(d/dt)\exp(-t/\gamma t_{iCo}) \propto \varepsilon_{\gamma}^{-1}\exp(-\varepsilon_{p} / \varepsilon_{\gamma})$
- ► HESS unID: $E^{-2.1 \sim 2.5} \rightarrow p = 1.1 1.5...$ non-linear effect? (It could be related to $E \sim E_{jet}$)

Radio-isotope decay model

FIG. 3.— Flux of the decay gamma-rays from accelerated RI ⁵⁶Co CRs in equations (10), (15) and (16), compared with the Fermi and HESS sensitivities. We assume a remnant of age $t_{age} = 10^5$ yr at d = 3 kpc with a CR energy $E = 3 \times 10^{51}$ erg and spectral index p = 1.5. We also show the synchrotron and IC emission from decay positrons given by equation (11) for $B = 3\mu G$ and the cosmic microwave background, compared with observational upper limits for an X-ray to TeV flux ratio of 10^{-2} and a radio to TeV flux ratio of 10^{-3} .

RI decay model - IC/Synchrotron

- IC/Synch from decay positrons
 - $dN_e = \varepsilon_e^{-p} d\varepsilon_e$ for $\Gamma m_e c^2 < \varepsilon_e < \varepsilon_p$
 - $dN_e = \varepsilon_e^{-p-1} d\varepsilon_e$ for $\varepsilon_p < \varepsilon_e < \varepsilon_{max}$
 - Synchrotron $v^{\text{lyn}} = qB \varepsilon_e^2 / 2 m_e^3 c^5 \sim 10^{-4} B_{-6} (\varepsilon_e / 0.1 \text{ TeV})^2$
 - ► IC (with CMB) $v^{IC} \sim 9 \varepsilon_{CMB}(\varepsilon_e/m_ec^2)^2 \sim 10^8(\varepsilon_e/0.1\text{TeV})^2$
 - Cooling time $t_c = 3m_e^2 c^3 / 4\sigma_T \varepsilon_e U \sim 10^7 (\varepsilon_e / 0.1 \text{ TeV}) U_{-12}^{-1} \text{ yr}$ > t_{γ} for $\varepsilon_e < \varepsilon_{max} \sim 10 \text{ TeV}$ (U: energy density of B and CMB)
 - \rightarrow Luminosity suppressed by $t_{\gamma}/t_c \sim 10^{-2}(t_{\gamma}/10^5 \text{yr})\varepsilon_e/0.1 \text{TeV})U_{-12}$
 - ~eV photons by decay positrons come from an extended region where optical background dominates.

Discussion

- Model discrimination: gamma-ray morphology
 - π^0 decay : shell structure
 - GeV emission if p=2.1-2.4 continues down to GeV
 - β decay : elongated structure
 - Low GeV emission
 - RI decay : center-filled structure
 - Low GeV emission, but young remnants could be bright if $\varepsilon_p \sim 20 \text{GeV} (t/10^4 \text{yr})$
- Neutrinos
 - π^{\pm} decay v's in π^{0} decay model, no v's in β decay model, ${}^{56}Co \rightarrow {}^{56}Fe^{*} + e^{+} + v_{e}$ in RI decay model, but fluxes are low.
- CRs above knee could be produced mainly by extragalactic and/or Galactic GRBs/HNe. Increasingly heavy composition may indicate acceleration by jets as in RI decay model.
- GRB remnants may be also responsible for CR positron/electron excess reported by PAMELA/ATIC/PPB-BETS [loka 2008].