Gamma-Ray Spectra due to Cosmic-Ray Interactions with Dense Gas Clouds

Michiko Ohishi¹, Masaki Mori¹, and Mark Walker² ¹ Institute for Cosmic Ray Research, University of Tokyo, Japan ² School of Physics, University of Sydney and ATNF/CSIRO, Australia

Gas cloud

Motivation

- Self-gravitating, cold, dense molecular hydrogen gas clouds-a possible form of baryonic dark matter (Ex. Walker and Wardle 1998, ApJ, 498 L125)
- Some Observational evidence
 - Can explain ESE (extreme scattering events) in the radio observation
- Dense gas irradiated by high-energy cosmic rays produce gamma-rays-could be a part of galactic diffuse gamma-ray emission p e
- Lack of detailed calculation of gamma-ray production from interaction in dense gas
- ⇒ Monte-Carlo calculation of interac-R~1AU $M\sim 10^{-4} M_{solar}$ tion process using modern high-energy T~10K simulator—GEANT4 (Ver. 4.5.1)

Gamma-ray production in dense matter

Examples of 10 GeV proton injection

Radius 1AU, molecular hydrogen, uniform Mean column density $\Sigma = 2R\rho \langle \cos\theta \rangle = \frac{4}{3}R\rho$

100 MeV for column density ~100g/cm²

· Contribution of Brems+annihilation get its maximum at Σ(column density)=100-1000g/cm²

Emissivity versus column density

consistent with one-interaction are calculations (Mori 1997, ibid.)

Calculation of diffuse gamma-rays Flux of diffuse gamma-rays from gas clouds

$$I_{D} = \frac{1}{\Sigma} \int_{0}^{\infty} ds \ \rho(s) J_{CR}(s) \frac{dN_{\gamma}}{dE} = \frac{1}{4\pi} \mathcal{E} Q, \quad Q \equiv \int_{0}^{\infty} ds \ \rho(s) \frac{J_{CR}(s)}{J_{CR}^{solar}}$$

Gas cloud distribution (Walker 1999, MNRAS 308, 551)

$$\rho(R, z) = \frac{\sigma^2}{2\pi G(R^2 + z^2 + r_c^2)}, \quad r_c = 6.2 \text{kpc}, \ \sigma = 155 \text{ km/s}$$

Cosmic ray model (Webber et al. 1992 ApJ 390, 96)

$$\frac{J_{CR}(R,z)}{J_{CR}^{solar}} = \left(\frac{R}{R_0}\right)^2 \exp\left[\frac{R_0 - R}{L} - \frac{|z|}{h}\right] \qquad (R_0, L, h) = (8.5, 7, 1.5) \text{ kpc}$$

$$J_{CR}^{solar} = J_{CR}(R_0, 0)$$

Discussion

Comparison with EGRET data

High Galactic latitudes (Kniffen et al. 1996, A&AS 120, 615)

- Observed I ~ 1.5×10^{-5} ph/(cm²s sr)
- \rightarrow Unmodeled emission <6×10⁻⁶ ph/(cm²s sr) \rightarrow Low Σ gas: \leq 20% of the total Galactic dark halo
- $(\sim 100\% \text{ for } \Sigma \ge 200 \text{g/cm}^2)$
- Low Galactic latitudes (Hunter et al. 1997, ApJ 481, 205)
- Observed $I \sim 3 \times 10^{-8}$ ph/(cm²s sr MeV) at 1GeV ($|\ell| \le 60^{\circ}$, $|\ell| \le 10^{\circ}$) → Galactic dark halo must be $\varepsilon \le 4.6 \times 10^{-6}$ ph/(s g MeV)
- with $< Q > = 3.28 \times 10^{-2} \text{ g/cm}^2$ \rightarrow Low Σ gas: \leq 30% of the total Galactic dark halo
- \rightarrow Galactic dark halo to be made of dense gas, $\Sigma \ge 100$ g/cm² Summary
- · Gamma-ray emissivity of dense gas declines substantially for $E \ge 100 \text{MeV}$ photons for $\Sigma \ge 100 \text{g/cm}^2$.
- EGRET data do not exclude purely baryonic models for the Galactic dark halo for $\Sigma \ge 200 \text{g/cm}^2$!