Galactic Magnetic Field

Masaki Mori

ICRR CANGAROO Seminar, May 24, 2002
Equipartition

- Energy-density equipartition between cosmic rays and magnetic fields

Figure 1. Strength of the total magnetic field in the Galaxy, averaged from the deconvolved surface brightness of the synchrotron emission at 408 MHz (Beuermann *et al.*, 1985), assuming energy equipartition between magnetic field and cosmic-ray energy densities (Berkhuijsen, personal communication). The accuracy is about 30%. The Sun is assumed to be located at $R = 8.5$ kpc.

Pulsars

- $<B_{\text{reg}}> = 1.4 \pm 0.2 \, \mu\text{G}$ from measurement of dispersion measure and rotation measure

Figure 8. Distribution of (B_y) of all measured pulsar RMs in Galactic coordinates. Plus signs indicate that the average field is directed towards us, and circles indicate that the average field is directed away from us. The size of symbols is proportional to the field strength within limits of 0.8 and 2.5 μG.

Han et al., MNRAS 306 (1999) 405
Plasma effects

- **Maxwell eqn.**
 \[\vec{E} = E \exp(i\omega t - i\vec{k} \cdot \vec{x}), \quad \vec{B} = \cdots \]
 \[i\vec{k} \cdot E = 4\pi \rho, \quad i\vec{k} \cdot B = 0 \]
 \[i\vec{k} \times E = i\frac{\omega}{c} \vec{B}, \quad i\vec{k} \times B = \frac{4\pi}{c} \vec{j} - i\frac{\omega}{c} E \]

- **Electron motion**
 \[m \frac{d}{dt} v = -eE \]
 \[v = eE/i\omega m \]
 \[j = -N_e e v = \sigma E, \quad \sigma = iN_e e / i\omega m \]

- **Charge conservation**
 \[i\omega \rho + i\vec{k} \cdot j = 0 \]
 \[\therefore \rho = \omega^{-1} \vec{k} \cdot j = \sigma \omega^{-1} \vec{k} \cdot E \]

- **Now Maxwell eqn.**
 \[\varepsilon \equiv 1 - 4\pi \sigma / i\omega \]
 \[i\vec{k} \cdot E = 0, \quad i\vec{k} \cdot B = 0 \]
 \[i\vec{k} \times E = i\frac{\omega}{c} \vec{B}, \quad i\vec{k} \times B = -i\frac{\omega}{c} \varepsilon E \]

- **k, E, B are RHS**
 \[kE = \omega B / c = \omega (\omega \varepsilon / kc) / c \]
 \[\therefore c^2 k^2 = \varepsilon \omega^2 \]
 \[\varepsilon = 1 - \left(\frac{\omega_p}{\omega} \right)^2, \quad \omega_p \equiv \frac{4\pi N_e e^2}{m} \]
 \[k = c^{-1} \sqrt{\omega^2 - \omega_p^2} \]
Dispersion in plasma

- Phase velocity
 \[v_{ph} \equiv \frac{\omega}{k} = c / n > c \]
 \[n = \sqrt{\varepsilon} = \sqrt{1 - \frac{\omega_p^2}{\omega^2}} \]

- Group velocity
 \[v_g \equiv \frac{\partial \omega}{\partial k} = c \sqrt{1 - \frac{\omega_p^2}{\omega^2}} \]

- Arrival time
 \[t_a = \int v_g^{-1} d\ell \]
 \[v_g^{-1} = \left(c \sqrt{1 - \frac{\omega_p^2}{\omega^2}} \right)^{-1} \approx \frac{1}{c} \left(1 + \frac{1}{2} \frac{\omega_p^2}{\omega^2} \right) \]
 for \(\omega >> \omega_p \)

- Arrival time dispersion
 \[\therefore \frac{dt_a}{d\omega} = - \frac{4\pi e^2}{cm\omega^3} \int N_e d\ell \]
Dispersion measure

- Delay time in the arrival of signals as a function of frequency

\[t_a = 4.15 \times 10^9 \text{ sec} \frac{1}{\nu^2} \int N_e d\ell \]

- Dispersion measure [sec Hz\(^{-2}\)]

\[\text{DM} = \int N_e d\ell = 2.410 \times 10^{-16} (t_1 - t_2) \left(\frac{1}{\nu_1^2} - \frac{1}{\nu_2^2} \right) \]
Faraday rotation

- **Polarization field**
 \[
P = (\mathbf{D} - \mathbf{E}) / 4\pi
 = (\varepsilon - 1)\mathbf{E} / 4\pi
 = N_e e \mathbf{r}
\]

- **Particle in mag. field**
 \[
e\mathbf{E} \pm \frac{eB\omega}{c}\mathbf{r} = -m\omega^2 \mathbf{r}
\]
 \[
 \therefore \mathbf{r} = -\frac{e}{m} \left(\frac{1}{\omega^2 \pm eB\omega / mc} \right)
\]
 \[
 \therefore \varepsilon = 1 - \frac{4\pi N_e e^2}{m\omega(\omega \pm \omega_c)}, \quad \omega_c = \frac{eB}{mc}
\]

- **Phase rotation**
 \[
 \omega_p \equiv 4\pi N_e e^2 / m \text{ (plasma freq.)}
\]
 \[
 \varepsilon_{R,L} = 1 - \frac{\omega_p^2}{\omega(\omega \pm \omega_c)^2}
\]
 \[
 \varphi_{R,L} = \int k_{R,L} d\ell
\]
 \[
 k_{R,L} = \frac{\omega}{c} \sqrt{\varepsilon_{R,L}} \approx \frac{\omega}{c} \left(1 - \frac{\omega_p^2}{2\omega^2} \left(1 + \frac{\omega_c}{\omega} \right) \right)
 \quad \text{for } \omega >> \omega_c, \omega >> \omega_p
\]

- **Rotation of linear polarization**
 \[
 \Delta \varphi = \frac{1}{2} \int (k_r - k_L) d\ell = \frac{1}{2} \int \frac{\omega_p^2 \omega_c}{c\omega^2} d\ell
 = \frac{2\pi e^3}{m^2 c^2 \omega^2} \int N_e B_{\parallel} d\ell \propto \omega^{-2}
\]
Linear polarization

- **Stokes parameters**

 \[E_x = a_1 \cos(2\pi vt - k \cdot r + \phi_1) \]

 \[E_y = a_2 \cos(2\pi vt - k \cdot r + \phi_2) \]

 \[I = a_1^2 + a_2^2 \]

 \[Q = a_1^2 - a_2^2 = I \cos 2\chi \cos 2\psi \]

 \[U = 2a_1a_2 \cos \phi = I \cos 2\chi \sin 2\psi \]

 \[V = 2a_1a_2 \sin \phi = I \sin 2\chi \]

\[L = \sqrt{Q^2 + U^2} \]

\[\tan 2\psi = \frac{U}{Q} \]
Rotation measure

- Faraday rotation of electric vector of linear polarization through a region in which the magnetic field is uniform

\[
\phi/\lambda^2 = 8.12 \times 10^3 \int_0^1 N_e B_{\parallel} d\ell
\]

- Rotation measure [rad/m²]

\[
RM = (\phi_1 - \phi_2) / (\lambda_1^2 - \lambda_2^2)
\]
Line-of-sight magnetic field

\[
\langle B_\parallel \rangle = \int N_e B_\parallel \, dl / \int N_e \, dl = \text{RM} / (0.812 \text{DM})
\]

(B in \(\mu \text{G} \))

TABLE 1

Rotation and Dispersion Measures

<table>
<thead>
<tr>
<th>PSR</th>
<th>(l)</th>
<th>(b)</th>
<th>Frequency Range (MHz)</th>
<th>DC (10(^4) Hz)</th>
<th>DM (cm(^{-3}) pc)</th>
<th>RM (rad m(^{-2}))</th>
<th>((\beta_{1\nu})^\circ) (microgauss)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0329+54</td>
<td>145</td>
<td>-1</td>
<td>280–485</td>
<td>11.100 ± 0.002</td>
<td>26.776 ± 0.005</td>
<td>-63.7 ± 0.4</td>
<td>-2.93 ± 0.02</td>
</tr>
<tr>
<td>0325+21</td>
<td>184</td>
<td>-7</td>
<td>281–421</td>
<td>21.07 ± 0.05†</td>
<td>50.8 ± 0.1†</td>
<td>-39.6 ± 0.2</td>
<td>-0.960 ± 0.006</td>
</tr>
<tr>
<td>0331+21</td>
<td>185</td>
<td>-6</td>
<td>365–414</td>
<td>23.705†</td>
<td>56.905†</td>
<td>-42.3 ± 0.5</td>
<td>-0.92 ± 0.02</td>
</tr>
<tr>
<td>0606+74</td>
<td>140</td>
<td>+32</td>
<td>365–421</td>
<td>2.42 ± 0.03</td>
<td>5.84 ± 0.06</td>
<td>-11.7 ± 1.3</td>
<td>-2.5 ± 0.3</td>
</tr>
<tr>
<td>0818–13</td>
<td>236</td>
<td>+13</td>
<td>365–421</td>
<td>16.97 ± 0.04</td>
<td>40.9 ± 0.1</td>
<td>-2.8 ± 1.7</td>
<td>-0.08 ± 0.05</td>
</tr>
<tr>
<td>0834+06</td>
<td>220</td>
<td>+26</td>
<td>365–414</td>
<td>5.35 ± 0.02</td>
<td>12.90 ± 0.04</td>
<td>+24.5 ± 2.5</td>
<td>+2.3 ± 0.3</td>
</tr>
<tr>
<td>0930+08</td>
<td>229</td>
<td>+44</td>
<td>280–421</td>
<td>1.230 ± 0.003</td>
<td>2.965 ± 0.007</td>
<td>+1.8 ± 0.5</td>
<td>+0.7 ± 0.3</td>
</tr>
<tr>
<td>1133+16</td>
<td>242</td>
<td>+69</td>
<td>280–421</td>
<td>2.006 ± 0.003</td>
<td>4.894 ± 0.007</td>
<td>+3.9 ± 0.2</td>
<td>+0.99 ± 0.06</td>
</tr>
<tr>
<td>1237+25</td>
<td>252</td>
<td>+87</td>
<td>365–414</td>
<td>3.840 ± 0.004</td>
<td>9.254 ± 0.008</td>
<td>-0.6 ± 0.4</td>
<td>-0.07 ± 0.05</td>
</tr>
<tr>
<td>1508+55</td>
<td>91</td>
<td>+52</td>
<td>281–421</td>
<td>8.133 ± 0.005</td>
<td>19.60 ± 0.02</td>
<td>+0.8 ± 0.7</td>
<td>+0.05 ± 0.04</td>
</tr>
<tr>
<td>1604–00</td>
<td>11</td>
<td>+36</td>
<td>365–410</td>
<td>4.45 ± 0.02</td>
<td>10.72 ± 0.05</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>1642–03</td>
<td>14</td>
<td>+26</td>
<td>365–421</td>
<td>14.816 ± 0.004</td>
<td>35.71 ± 0.01</td>
<td>+16.5 ± 2.5</td>
<td>+0.58 ± 0.09</td>
</tr>
<tr>
<td>1706–16</td>
<td>6</td>
<td>+14</td>
<td>365–414</td>
<td>10.37 ± 0.03</td>
<td>24.90 ± 0.08</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>1818–04</td>
<td>26</td>
<td>+5</td>
<td>365–421</td>
<td>35.06 ± 0.04</td>
<td>84.48 ± 0.08</td>
<td>+70.5 ± 7.5</td>
<td>+1.0 ± 0.1</td>
</tr>
<tr>
<td>1911–04</td>
<td>31</td>
<td>-7</td>
<td>365–414</td>
<td>37.10 ± 0.02</td>
<td>89.41 ± 0.04</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>1929+10</td>
<td>47</td>
<td>-4</td>
<td>365–410</td>
<td>1.318 ± 0.001</td>
<td>3.176 ± 0.003</td>
<td>-8.6 ± 1.8</td>
<td>-3.3 ± 0.7</td>
</tr>
<tr>
<td>1933+16</td>
<td>52</td>
<td>-2</td>
<td>365–421</td>
<td>65.78 ± 0.02</td>
<td>158.53 ± 0.05</td>
<td>-1.9 ± 0.4</td>
<td>-0.015 ± 0.003</td>
</tr>
<tr>
<td>2016+28</td>
<td>68</td>
<td>-4</td>
<td>365–414</td>
<td>5.88 ± 0.01</td>
<td>14.16 ± 0.03</td>
<td>-34.6 ± 1.4</td>
<td>-3.0 ± 0.2</td>
</tr>
<tr>
<td>2021+51</td>
<td>88</td>
<td>+8</td>
<td>365–414</td>
<td>9.369 ± 0.002</td>
<td>22.580 ± 0.004</td>
<td>-6.5 ± 0.9</td>
<td>-0.36 ± 0.05</td>
</tr>
<tr>
<td>2045–16</td>
<td>31</td>
<td>-33</td>
<td>281–410</td>
<td>4.775 ± 0.004</td>
<td>11.51 ± 0.01</td>
<td>-10.8 ± 0.4</td>
<td>-1.15 ± 0.04</td>
</tr>
<tr>
<td>2111+46</td>
<td>99</td>
<td>-1</td>
<td>365–414</td>
<td>58.6 ± 0.2</td>
<td>141.4 ± 0.4</td>
<td>-223.7 ± 2.2</td>
<td>-1.95 ± 0.03</td>
</tr>
<tr>
<td>2217+47</td>
<td>98</td>
<td>-8</td>
<td>365–414</td>
<td>18.06 ± 0.02</td>
<td>43.52 ± 0.05</td>
<td>-35.3 ± 1.8</td>
<td>-1.00 ± 0.05</td>
</tr>
<tr>
<td>2303+30</td>
<td>98</td>
<td>-27</td>
<td>365–410</td>
<td>20.70 ± 0.05</td>
<td>49.9 ± 0.2</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

* A positive field component is directed toward the observer.
† Richards et al. (1970).
‡ Manchester (1971b).

Structure of the Regular field

- Pitch angle $\sim -8^\circ$
 Cf. Spiral arms: -18° (stars) -13° (gas)
- Field reversals

Figure 2. The distribution of the RMs of pulsars within 8° of the Galactic plane. Positive RMs are shown as crosses, negative RMs as circles. The most recent RM data are indicated by \times and open squares. The symbol sizes are proportional to the square root of $|RM|$, with the limits of 5 and 250 rad m$^{-2}$. The directions of the bisymmetric field model are given as arrows. The approximate location of four spiral arms is indicated as dotted lines. The dotted circle has a radius of 3 kpc (from Han et al., 1999a).
Turbulent fields

- Sync. emission along the local arm (regular field vanishes) \(\Rightarrow\) there is turbulent field!
- Starlight and synchrotron polarization data \(\Rightarrow\) \(B_{\text{turb}} \sim 5\ \mu\text{G},\ L_{\text{turb}} \sim 55\) or 10-100 pc
- Depolarization by turbulent fields at cm-radio \(\Rightarrow\) \(L_{\text{turb}} \sim 25\) pc \(f^{1/3}\) (\(f\): filling factor of turbulent cells)
- Faraday dispersion by turbulent fields at dm-radio \(\Rightarrow\) \(L_{\text{turb}} \sim 7\) pc \(f^{-1}\)
- \(L_{\text{turb}} \sim 20\) pc and \(f \sim 0.4?\)
Summary

- Regular field: $1.8 \pm 0.3 \, \mu G$
- Local total field: $\sim 5 \, \mu G$
- Stronger towards the Galactic center
- At least 3 (perhaps 5) field reversals in our Galaxy, separated by spiral arms.

References:

Text books