

# CANGAROO MWL strategies, policies and outcomes

Masaki Mori

#### for the CANGAROO-III team

Institute for Cosmic Ray Research, University of Tokyo

The Second Multiwavelength Workshop for Next Generation Gamma-Ray Experiments – Adler Planetarium, Chicago, Illinois, August 9-10, 2007 • University of Adelaide



- 🔹 Australian National University 🎽
- Ibaraki University
- Ibaraki Prefectural University
- Konan University
- Kyoto University
- STE Lab, Nagoya University [
- National Astronomical Observatory of Japan



• Kitasato University



- Australia Telescope National Facility
- Tokai University



- ICRR, University of Tokyo
- Yamagata University
  - Yamanashi Gakuin University
- Hiroshima University



### Brief history of CANGAROO

- 1987: SN1987A (JANZOS collaboration in New Zealand)
- 1990: 3.8m telescope (CANGAROO-I)
- 1990: ICRR-Adelaide Physics agreement
- 1992: Start obs. of 3.8m tel.
- 1999: 7m telescope
- 2000: Upgrade to 10m (CANGAROO-II)
- 2001: U.Tokyo-U.Adelaide agreement
- 2002: Second and third 10m tel.
- 2004: Four telescope system (CANGAROO-III)



CANGAROO-III (4 x  $10m\phi$ )



CANGAROO-I (3.8m¢)



CANGAROO-II (10m¢)



#### CANGAROO site: Woomera

- $\square$  136°47'E, 31°06'S, 160m a.s.l.
- Desert area...good weather (72% clear nights)
- Far from large cities...dark sky
- Former rocket range and prohibited area...infrastructure, support and safety
- Adelaide group was operating
   *BIGRAT...*experience



ELDO rocket Launch site in '60s



BIGRAT

(BIcentennial Gamma RAy Telescope)



#### **Target selection**

- Target meeting
  - Proposal and selection of targets
  - Every a few months, TV conference
  - 1-3 targets/month, matching in right ascension
- Target-of-Opportunity (ToO) observations
  - AGNs etc.
  - Trigger: ASM etc.
- Extended target meeting
  - Discussion of possible TeV objects with researchers in wide fields (X-ray, optical, IR, radio, theorists)
- Observation
  - Moonless, clear nights
  - $\sim$  700 hours/year (past record)



#### Illustrative example

#### **Observation schedule**

#### •Observation Schedule for July 2007

Cyan lines: rising times of Sun and Moon
Magenta lines: setting times of Sun and Moon
Dot-dashed lines: astronomical twilight (sunrise - 1.5 hr and sunset + 1.5 hr)
Yellow lines: observable periods
Red numbers: culmination times of the selected objects

- 1. PSR 1509-58
- 2. RX J1713.7-3946
- 3. PKS 2155-304



#### Data handling and analysis

- Data are stored on local HDD and copied to mobile HDD, then carried to Japan monthly (~70GB/month).
  - Online-analysis system is still underway...
  - Woomera site only dial-up connection is available (64 kbps)
  - Recently 512 kbps ADSL line is connected to observer's flat (at last).
- Data are archived on ICRR storage (79TB HDD+225TB tape) and accessed by each institution.
- Analysis (and MC simulation) is carried out by mainly ICRR computer farm (700 CPUs).
- ICRR computer system will be upgraded in January 2008 (1 PB, 1000 CPUs).

#### Small optical monitor telescope

- Mead LX200-30 telescope
- CCD: Apogee Ap-7p
- Linux controlled
- Automated operation upon GCN alert (in preparation)







#### Case study I – MSH15-52



MSH15-52 / RCW89 PSR 1509-58 ( $\dot{E}$ =2×10<sup>37</sup>erg/s) Pulsar wind nebula

CANGAROO-III: Extended emission (total excess 582±77)

2D Gaussian fit results (before smoothing)

 $\frac{\text{rotation angle}}{\phi = 29.8 \pm 1.9 \text{deg}}$ 

intrinsic standard deviations

 $\sigma_{x^{'}}$  = 0.07  $\pm 0.07$  deg

$$\sigma_{y^{'}}$$
 = 0.21  $\pm 0.08~deg$ 

consistent with H.E.S.S. (preliminary)

#### MSH15-52 – hadronic model





#### MSH15-52 – leptonic model (2)

- BeppoSAX/MECS data for soft X-ray
- INTEGRAL/IBIS data for hard X-ray

13

Electron spectrum: Single power law

(preliminary)



## MSH15-52 – leptonic model (3)

• Chandra ACIS (excluding PSR1509-58 region)



Y. Sakamoto et al., Proc. ICRC 2007

#### Case study II – PKS 2155-304

- Nearby HBL in the southern sky (z=0.116)
- TeV detection (Durham 1999; H.E.S.S. 2005)
- Large flare in 2006 (H.E.S.S., ATEL#867/arXiv:0706.0797)
- CANGAROO-IIIToO observations

|            | <i>t</i> <sub>obs</sub> [hrs] | z[deg] | r <sub>tr</sub> [Hz] | <i>r</i> <sub>sh</sub> [Hz] | t <sub>liv</sub> [hrs] | N[events]    | <b>s</b> [σ] |
|------------|-------------------------------|--------|----------------------|-----------------------------|------------------------|--------------|--------------|
| July 28    | 3.9                           | 20.4   | 12.1                 | 8.0                         | 2.5                    | 54±16        | 3.4          |
| July 29    | 2.0                           | 12.1   | 6.2                  | 4.1                         | 0.9                    | 28±12        | 2.4          |
| July 30    | 4.0                           | 22.2   | 12.5                 | 8.1                         | 2.3                    | 86±17        | 5.0          |
| July 31    | 3.9                           | 21.7   | 11.6                 | 7.6                         | 2.4                    | 35±21        | 1.7          |
| Aug 2      | 3.9                           | 21.5   | 11.9                 | 7.7                         | 2.3                    | $1.6 \pm 15$ | 0.11         |
| Sub total  | 17.6                          | 20.4   | 11.4                 | 7.3                         | 10.5                   | 189±33       | 5.7          |
| Aug. 17-25 | 19.1                          | 20.9   | 10.9                 | 7.4                         | 11.6                   | 75±29        | 2.6          |

K. Nishijima et al., Proc. ICRC 2007

#### PKS 2155-304 – TeV vs X-ray



16

K. Nishijima et al., Proc. ICRC 2007

#### PKS 2155-304: nightly light curve



Note 1: CANGAROO points were scaled from those above 620 GeV by *E*<sup>-3.3</sup> spectrum. Note 2: X-axis of HESS data are NOT official [from M. Raue, INTEGRAL Workshop, Rome, Oct. 2006]



#### Summary

- CANGAROO-III covers a part of the southern sky that does not overlap with H.E.S.S. at the same time in the TeV region.
- Needless to say, multiwavelength coverage of objects is essential in exploring the emission mechanism of non-thermal radiation.
  - Discrimination of emission models is only possible with complete coverage on spectrum.
  - Campaign observations for variable sources are important.
- Still the coverage in the TeV sky is far from complete both in space domain and time domain since FOV and operation time of Cherenkov telescopes is limited ( $\sim 10^{-2}$ sr; dark, clear nights).
  - Observatories should be spread over the world!

### X-ray observations of MSH15-52

