Hadronic Interactions & Air Showers Surgey Østapchenko (NTNU, Trondizim)

CRR (Tokyo), October 11, 201

Tr

High energy cosmic rays – studied via measurements of air showers (nuclear-e/m cascades induced by CR particles)

High energy cosmic rays – studied via measurements of air showers ground-based observations (= thick target experiments)

- primary CR energy \iff charged particle density at ground
- CR composition \iff muon density at ground

High energy cosmic rays – studied via measurements of air showers ground-based observations (= thick target experiments)

- primary CR energy \iff charged particle density at ground
- CR composition \iff muon density at ground

High energy cosmic rays – studied via measurements of air showers ground-based observations (= thick target experiments)

- primary CR energy \iff charged particle density at ground
- CR composition \iff muon density at ground

• CR composition \iff shower maximum position X_{\max}

• CR composition \iff shower maximum position X_{\max}

- EAS development driven by interactions of primary / 'leading' secondary particles
- ⇒ hadronic cascade
 = EAS backbone
- secondary cascades well averaged
- observables used for CR composition studies – most sensitive to hadronic physics
- e.g. X_{max} : to $\sigma_{p-\text{air}}^{\text{inel}}$ and to 'inelasticity' $K_{p-\text{air}}^{\text{inel}}$ • N_{μ} : to $N_{\pi-\text{air}}^{\text{ch}}|_{E \sim \sqrt{E_0}}$

- EAS development driven by interactions of primary / 'leading' secondary particles
- ⇒ hadronic cascade
 = EAS backbone
- secondary cascades well averaged
- observables used for CR composition studies – most sensitive to hadronic physics
- e.g. X_{\max} : to $\sigma_{p-\text{air}}^{\text{inel}}$ and to 'inelasticity' $K_{p-\text{air}}^{\text{inel}}$ • N_{μ} : to $N_{\pi-\text{air}}^{\text{ch}}|_{E \sim \sqrt{E_0}}$

- EAS development driven by interactions of primary / 'leading' secondary particles
- \Rightarrow hadronic cascade = EAS backbone
- secondary cascades well averaged
- observables used for CR composition studies – most sensitive to hadronic physics
- e.g. X_{max} : to $\sigma_{p-\text{air}}^{\text{inel}}$ and to 'inelasticity' $K_{p-\text{air}}^{\text{inel}}$ • N_{μ} : to $N_{\pi-\text{air}}^{\text{ch}}|_{E \sim \sqrt{E_0}}$

- EAS development driven by interactions of primary / 'leading' secondary particles
- \Rightarrow hadronic cascade = EAS backbone
- secondary cascades well averaged
- observables used for CR composition studies – most sensitive to hadronic physics
- e.g. X_{max}: to σ^{inel}_{p-air} and to 'inelasticity' K^{inel}_{p-air}
 N_μ: to N^{ch}_{π-air} |_{E ∼ √E0}

- EAS development driven by interactions of primary / 'leading' secondary particles
- ⇒ hadronic cascade
 = EAS backbone
- secondary cascades well averaged
- observables used for CR composition studies – most sensitive to hadronic physics
- e.g. X_{\max} : to $\sigma_{p-\text{air}}^{\text{inel}}$ and to 'inelasticity' $K_{p-\text{air}}^{\text{inel}}$ • N_{μ} : to $N_{\pi-\text{air}}^{\text{ch}}|_{E \sim \sqrt{E_0}}$

- EAS development driven by interactions of primary / 'leading' secondary particles
- \Rightarrow hadronic cascade = EAS backbone
- secondary cascades well averaged
- observables used for CR composition studies – most sensitive to hadronic physics
- e.g. X_{max}: to σ^{inel}_{p-air} and to 'inelasticity' K^{inel}_{p-air}
- N_{μ} : to $N_{\pi-\mathrm{air}}^{\mathrm{ch}}|_{E \sim \sqrt{E_0}}$ = 990

For average (only!) air shower characteristics: A-induced EAS of energy E - equivalent to A proton-induced showers of energy E/A

- *N* of 'wounded' nucleons per collision: $\langle v_A \rangle = A \sigma_{p-\text{air}}^{\text{inel}} / \sigma_{A-\text{air}}^{\text{inel}}$ (valid up to target diffraction)
- nuclear m.f.p. is $\sigma_{p-air}^{inel}/\sigma_{A-air}^{inel}$ shorter
- however, each nucleon interacts with probability: $w_{int} = \frac{\sigma_{p-air}^{inel}}{\sigma_{m-air}^{inel}}$

For average (only!) air shower characteristics: A-induced EAS of energy E - equivalent to A proton-induced showers of energy E/A

- *N* of 'wounded' nucleons per collision: $\langle v_A \rangle = A \sigma_{p-\text{air}}^{\text{inel}} / \sigma_{A-\text{air}}^{\text{inel}}$ (valid up to target diffraction)
- \bullet nuclear m.f.p. is $\sigma_{\mathit{p-air}}^{inel}/\sigma_{\mathit{A-air}}^{inel}$ shorter
- however, each nucleon interacts with probability: $w_{int} = \frac{\sigma_{p-air}^{inel}}{\sigma_{m-air}^{inel}}$

For average (only!) air shower characteristics: A-induced EAS of energy E - equivalent to A proton-induced showers of energy E/A

• *N* of 'wounded' nucleons per collision: $\langle v_A \rangle = A \sigma_{p-\text{air}}^{\text{inel}} / \sigma_{A-\text{air}}^{\text{inel}}$ (valid up to target diffraction)

- nuclear m.f.p. is $\sigma_{p-air}^{inel}/\sigma_{A-air}^{inel}$ shorter
- however, each nucleon interacts with probability: $w_{int} = \frac{\sigma_{p-air}^{inel}}{\sigma_{m-air}^{inel}}$

For average (only!) air shower characteristics: A-induced EAS of energy E - equivalent to A proton-induced showers of energy E/A

- *N* of 'wounded' nucleons per collision: $\langle v_A \rangle = A \sigma_{p-\text{air}}^{\text{inel}} / \sigma_{A-\text{air}}^{\text{inel}}$ (valid up to target diffraction)
- \bullet nuclear m.f.p. is $\sigma_{\mathit{p-air}}^{inel}/\sigma_{\mathit{A-air}}^{inel}$ shorter
- however, each nucleon interacts with probability: $w_{int} = \frac{\sigma_{p-ain}^{inel}}{\sigma_{a-ain}^{inel}}$

For average (only!) air shower characteristics: A-induced EAS of energy E - equivalent to A proton-induced showers of energy E/A

- *N* of 'wounded' nucleons per collision: $\langle v_A \rangle = A \sigma_{p-\text{air}}^{\text{inel}} / \sigma_{A-\text{air}}^{\text{inel}}$ (valid up to target diffraction)
- \bullet nuclear m.f.p. is $\sigma_{p-air}^{inel}/\sigma_{A-air}^{inel}$ shorter
- however, each nucleon interacts with probability: $w_{\text{int}} = \frac{\sigma_{p-\text{air}}^{\text{inter}}}{\sigma_{p-\text{air}}^{\text{inter}}}$
- $\Rightarrow \langle X^A_{\max}(E) \rangle \simeq \langle X^p_{\max}(E/A) \rangle; \quad \langle N^A_{e/\mu}(E) \rangle \simeq A \cdot \langle N^p_{e/\mu}(E/A) \rangle$

For average (only!) air shower characteristics: A-induced EAS of energy E - equivalent to A proton-induced showers of energy E/A

• *N* of 'wounded' nucleons per collision: $\langle v_A \rangle = A \sigma_{p-\text{air}}^{\text{inel}} / \sigma_{A-\text{air}}^{\text{inel}}$ (valid up to target diffraction)

- nuclear m.f.p. is $\sigma_{p-air}^{inel}/\sigma_{A-air}^{inel}$ shorter
- however, each nucleon interacts with probability: $w_{int} = \frac{\sigma_{p-ain}^{inel}}{\sigma_{m-ain}^{inel}}$
- $\Rightarrow \langle X^A_{\max}(E) \rangle \simeq \langle X^p_{\max}(E/A) \rangle; \quad \langle N^A_{e/\mu}(E) \rangle \simeq A \cdot \langle N^p_{e/\mu}(E/A) \rangle$
- $\langle X_{\max}^{p}(E) \rangle \simeq \text{const} + ER \ln E, \ ER \equiv d \langle X_{\max}^{p}(E) \rangle / dE;$ $\langle N_{e/\mu}^{p}(E/A) \rangle \propto E^{\alpha_{e/\mu}}, \ \alpha_{e} \simeq 1.1, \ \alpha_{\mu} \simeq 0.9$

For average (only!) air shower characteristics: A-induced EAS of energy E – equivalent to A proton-induced showers of energy E/A

• *N* of 'wounded' nucleons per collision: $\langle v_A \rangle = A \sigma_{p-\text{air}}^{\text{inel}} / \sigma_{A-\text{air}}^{\text{inel}}$ (valid up to target diffraction)

- \bullet nuclear m.f.p. is $\sigma_{p-air}^{inel}/\sigma_{A-air}^{inel}$ shorter
- however, each nucleon interacts with probability: $w_{int} = \frac{\sigma_{p-air}^{inel}}{\sigma_{A-air}^{inel}}$

•
$$\Rightarrow \langle X^A_{\max}(E) \rangle \simeq \langle X^p_{\max}(E/A) \rangle; \quad \langle N^A_{e/\mu}(E) \rangle \simeq A \cdot \langle N^p_{e/\mu}(E/A) \rangle$$

•
$$\langle X_{\max}^{p}(E) \rangle \simeq \operatorname{const} + ER \ln E, \ ER \equiv d \langle X_{\max}^{p}(E) \rangle / dE;$$

 $\langle N_{e/\mu}^{p}(E/A) \rangle \propto E^{\alpha_{e/\mu}}, \ \alpha_{e} \simeq 1.1, \ \alpha_{\mu} \simeq 0.9$

•
$$\Rightarrow \langle X_{\max}^A(E) \rangle \simeq \langle X_{\max}^p(E) \rangle - ER \ln A$$

 $\langle N_e^A(E) \rangle \simeq \langle N_e^p(E) \rangle A^{0.1}; \quad \langle N_\mu^A(E) \rangle \simeq \langle N_\mu^p(E) \rangle A^{-0.1}$
- nucleus-induced air showers reach their maxima earlier,
have less e^{\pm} and more muons

For average (only!) air shower characteristics: A-induced EAS of energy E - equivalent to A proton-induced showers of energy E/A

- *N* of 'wounded' nucleons per collision: $\langle v_A \rangle = A \sigma_{p-\text{air}}^{\text{inel}} / \sigma_{A-\text{air}}^{\text{inel}}$ (valid up to target diffraction)
- nuclear m.f.p. is $\sigma_{p-air}^{inel}/\sigma_{A-air}^{inel}$ shorter
- however, each nucleon interacts with probability: $w_{\text{int}} = \frac{\sigma_{p-ain}^{\text{inel}}}{\sigma_{h-ain}^{\text{nel}}}$
- $\Rightarrow \langle X^A_{\max}(E) \rangle \simeq \langle X^p_{\max}(E/A) \rangle; \quad \langle N^A_{e/\mu}(E) \rangle \simeq A \cdot \langle N^p_{e/\mu}(E/A) \rangle$
- $\langle X^p_{\max}(E) \rangle \simeq \text{const} + ER \ln E, ER \equiv d \langle X^p_{\max}(E) \rangle / dE;$ $\langle N^p_{+}(E/A) \rangle \propto E^{\alpha_{e/\mu}}, \alpha_e \simeq 1.1, \alpha_{\mu} \simeq 0.9$ NB: CR composition studies – by comparing with model predictions

For average (only!) air shower characteristics: A-induced EAS of energy E – equivalent to A proton-induced showers of energy E/A

- *N* of 'wounded' nucleons per collision: $\langle v_A \rangle = A \sigma_{p-\text{air}}^{\text{inel}} / \sigma_{A-\text{air}}^{\text{inel}}$ (valid up to target diffraction)
- nuclear m.f.p. is $\sigma_{p-air}^{inel}/\sigma_{A-air}^{inel}$ shorter
- however, each nucleon interacts with probability: $w_{int} = \frac{\sigma_{p-air}^{inel}}{\sigma_{A-air}^{inel}}$
- $\Rightarrow \langle X^A_{\max}(E) \rangle \simeq \langle X^p_{\max}(E/A) \rangle; \quad \langle N^A_{e/\mu}(E) \rangle \simeq A \cdot \langle N^p_{e/\mu}(E/A) \rangle$
- $\langle X_{\max}^{p}(E) \rangle \simeq \text{const} + ER \ln E, ER \equiv d \langle X_{\max}^{p}(E) \rangle / dE;$ $\langle N^{p}_{,i}(E/A) \rangle \propto E^{\alpha_{e/\mu}}, \alpha_{e} \simeq 1.1, \alpha_{\mu} \simeq 0.9$ NB: CR composition studies – by comparing with model predictions • \Rightarrow depend crucially on the correctness of model description

For average (only!) air shower characteristics: A-induced EAS of energy E – equivalent to A proton-induced showers of energy E/A

- *N* of 'wounded' nucleons per collision: $\langle v_A \rangle = A \sigma_{p-\text{air}}^{\text{inel}} / \sigma_{A-\text{air}}^{\text{inel}}$ (valid up to target diffraction)
- nuclear m.f.p. is $\sigma_{p-air}^{inel}/\sigma_{A-air}^{inel}$ shorter
- however, each nucleon interacts with probability: $w_{int} = \frac{\sigma_{p-air}^{inel}}{\sigma_{A-air}^{inel}}$
- $\Rightarrow \langle X^A_{\max}(E) \rangle \simeq \langle X^p_{\max}(E/A) \rangle; \quad \langle N^A_{e/\mu}(E) \rangle \simeq A \cdot \langle N^p_{e/\mu}(E/A) \rangle$
- $\langle X_{\max}^{p}(E) \rangle \simeq \text{const} + ER \ln E, ER \equiv d \langle X_{\max}^{p}(E) \rangle / dE;$ $\langle N^{p}, (E/A) \rangle \propto E^{\alpha_{e/\mu}}, \alpha_{e} \simeq 1.1, \alpha_{u} \simeq 0.9$ NB: CR composition studies – by comparing with model predictions

ib. CK composition studies – by comparing with moder predictions

- ullet \Rightarrow depend crucially on the correctness of model description
- experiments measure EAS properties for individual showers

For average (only!) air shower characteristics: A-induced EAS of energy E - equivalent to A proton-induced showers of energy E/A

- *N* of 'wounded' nucleons per collision: $\langle v_A \rangle = A \sigma_{p-\text{air}}^{\text{inel}} / \sigma_{A-\text{air}}^{\text{inel}}$ (valid up to target diffraction)
- nuclear m.f.p. is $\sigma_{p-air}^{inel}/\sigma_{A-air}^{inel}$ shorter
- however, each nucleon interacts with probability: $w_{int} = \frac{\sigma_{p-air}^{inel}}{\sigma_{A-air}^{inel}}$
- $\Rightarrow \langle X^A_{\max}(E) \rangle \simeq \langle X^p_{\max}(E/A) \rangle; \quad \langle N^A_{e/\mu}(E) \rangle \simeq A \cdot \langle N^p_{e/\mu}(E/A) \rangle$
- $\langle X_{\max}^{p}(E) \rangle \simeq \text{const} + ER \ln E, ER \equiv d\langle X_{\max}^{p}(E) \rangle / dE;$ $\langle N^{p}, (E/A) \rangle \propto E^{\alpha_{e/\mu}}, \alpha_{e} \simeq 1.1, \alpha_{\mu} \simeq 0.9$

NB: CR composition studies – by comparing with model predictions

- ullet \Rightarrow depend crucially on the correctness of model description
- experiments measure EAS properties for individual showers
- \Rightarrow shower-to-shower fluctuations have to be described

- multiple scattering picture: many parton cascades develop in parallel
- generally required for unitarity
- allows to explain multiple (mini-)jet production

[picture from R. Engel]

- multiple scattering picture: many parton cascades develop in parallel
- generally required for unitarity
- allows to explain multiple (mini-)jet production

[picture from R. Engel]

- multiple scattering picture: many parton cascades develop in parallel
- generally required for unitarity
- allows to explain multiple (mini-)jet production

[picture from R. Engel]

- multiple scattering picture: many parton cascades develop in parallel
- generally required for unitarity
- allows to explain multiple (mini-)jet production

- large effective area ($\Delta b^2 \sim 1/|q^2|$)
- slow energy rise / low parton density
- \Rightarrow dominant at low energies & large b

- multiple scattering picture: many parton cascades develop in parallel
- generally required for unitarity
- allows to explain multiple (mini-)jet production

- large effective area $(\Delta b^2 \sim 1/|q^2|)$
- slow energy rise / low parton density
- \Rightarrow dominant at low energies & large b

- multiple scattering picture: many parton cascades develop in parallel
- generally required for unitarity
- allows to explain multiple (mini-)jet production

- large effective area $(\Delta b^2 \sim 1/|q^2|)$
- slow energy rise / low parton density
- \Rightarrow dominant at low energies & large b

- multiple scattering picture: many parton cascades develop in parallel
- generally required for unitarity
- allows to explain multiple (mini-)jet production

- large effective area $(\Delta b^2 \sim 1/|q^2|)$
- slow energy rise / low parton density
- \Rightarrow dominant at low energies & large b

- multiple scattering picture: many parton cascades develop in parallel
- generally required for unitarity
- allows to explain multiple (mini-)jet production

- small effective area
- rapid energy rise / high parton density
- ullet \Rightarrow important for dedicated QCD studies

- multiple scattering picture: many parton cascades develop in parallel
- generally required for unitarity
- allows to explain multiple (mini-)jet production

- small effective area
- rapid energy rise / high parton density
- ullet \Rightarrow important for dedicated QCD studies

- multiple scattering picture: many parton cascades develop in parallel
- generally required for unitarity
- allows to explain multiple (mini-)jet production

- small effective area
- rapid energy rise / high parton density
- ullet \Rightarrow important for dedicated QCD studies

- multiple scattering picture: many parton cascades develop in parallel
- generally required for unitarity
- allows to explain multiple (mini-)jet production

- small effective area
- rapid energy rise / high parton density
- \Rightarrow important for dedicated QCD studies

- multiple scattering picture: many parton cascades develop in parallel
- generally required for unitarity
- allows to explain multiple (mini-)jet production

- combines 'soft' & hard parton evolution
- ullet \Rightarrow large area / rapid energy rise / high density
- dominant at high energies / wide b-range

- multiple scattering picture: many parton cascades develop in parallel
- generally required for unitarity
- allows to explain multiple (mini-)jet production

- combines 'soft' & hard parton evolution
- \bullet \Rightarrow large area / rapid energy rise / high density
- dominant at high energies / wide b-range

- multiple scattering picture: many parton cascades develop in parallel
- generally required for unitarity
- allows to explain multiple (mini-)jet production

- combines 'soft' & hard parton evolution
- \Rightarrow large area / rapid energy rise / high density
- dominant at high energies / wide b-range

- multiple scattering picture: many parton cascades develop in parallel
- generally required for unitarity
- allows to explain multiple (mini-)jet production

- combines 'soft' & hard parton evolution
- $\bullet\,\Rightarrow$ large area / rapid energy rise / high density
- dominant at high energies / wide b-range

- multiple scattering picture: many parton cascades develop in parallel
- generally required for unitarity
- allows to explain multiple (mini-)jet production

- \bullet soft processes $\rightarrow \sigma_{tot}, \sigma_{inel},$ diffraction
- hard processes \rightarrow multiplicity
- 'black disk' broadens with energy ⇒ hard processes – more and more important

- multiple scattering picture: many parton cascades develop in parallel
- generally required for unitarity
- allows to explain multiple (mini-)jet production

- soft processes $\rightarrow \sigma_{tot}, \sigma_{inel},$ diffraction
- hard processes \rightarrow multiplicity
- 'black disk' broadens with energy ⇒ hard processes – more and more important

- multiple scattering picture: many parton cascades develop in parallel
- generally required for unitarity
- allows to explain multiple (mini-)jet production

- \bullet soft processes $\rightarrow \sigma_{tot}, \sigma_{inel},$ diffraction
- hard processes → multiplicity
- 'black disk' broadens with energy ⇒ hard processes – more and more important

- multiple scattering picture: many parton cascades develop in parallel
- generally required for unitarity
- allows to explain multiple (mini-)jet production

- \bullet soft processes $\rightarrow \sigma_{tot}, \sigma_{inel},$ diffraction
- hard processes \rightarrow multiplicity
- 'black disk' broadens with energy ⇒ hard processes – more and more important

- multiple scattering picture: many parton cascades develop in parallel
- generally required for unitarity
- allows to explain multiple (mini-)jet production

NB: separation between soft & hard processes - artificial

- physics changes smoothly from small to large q^2
- parton density decreases gradually from small to large b
- soit processes otot, omer, unraction
- hard processes → multiplicity
- 'black disk' broadens with energy ⇒ hard⁻

- multiple scattering picture: many parton cascades develop in parallel
- generally required for unitarity
- allows to explain multiple (mini-)jet production

NB: separation between soft & hard processes - artificial

- physics changes smoothly from small to large q^2
- parton density decreases gradually from small to large b
- soit processes otot, omer, unraction
- hard processes → multiplicity
- 'black disk' broadens with energy ⇒ hard⁻ * *

- multiple scattering picture: many parton cascades develop in parallel
- generally required for unitarity
- allows to explain multiple (mini-)jet production

NB: separation between soft & hard processes - artificial

- physics changes smoothly from small to large q^2
- parton density decreases gradually from small to large b
- soit processes otot, omer, unraction
- hard processes → multiplicity
- 'black disk' broadens with energy ⇒ hard⁻ * *

- parton cascades strongly overlap and interact with each other
- ⇒ shadowing effects (slower rise of parton density)
- saturation: parton production
 compensated by their fusion

- parton cascades strongly overlap and interact with each other
- ⇒ shadowing effects (slower rise of parton density)
- saturation: parton production
 compensated by their fusion

- parton cascades strongly overlap and interact with each other
- ⇒ shadowing effects (slower rise of parton density)
- saturation: parton production
 compensated by their fusion

- parton cascades strongly overlap and interact with each other
- ⇒ shadowing effects (slower rise of parton density)
- saturation: parton production
 compensated by their fusion

When parton density becomes high (high energy & small b):

- parton cascades strongly overlap and interact with each other
- ⇒ shadowing effects (slower rise of parton density)
- saturation: parton production
 compensated by their fusion

- 'soft' (low p_t) partons fully saturated
- population dominated by 'hard' partons
- ⇒ very dense parton system can be described perturbatively

When parton density becomes high (high energy & small b):

- parton cascades strongly overlap and interact with each other
- ⇒ shadowing effects (slower rise of parton density)
- saturation: parton production
 compensated by their fusion

- 'soft' (low p_t) partons fully saturated
- population dominated by 'hard' partons
- ⇒ very dense parton system can be described perturbatively

When parton density becomes high (high energy & small b):

- parton cascades strongly overlap and interact with each other
- ⇒ shadowing effects (slower rise of parton density)
- saturation: parton production
 compensated by their fusion

- 'soft' (low p_t) partons fully saturated
- population dominated by 'hard' partons
- ⇒ very dense parton system can be described perturbatively

When parton density becomes high (high energy & small b):

- parton cascades strongly overlap and interact with each other
- ⇒ shadowing effects (slower rise of parton density)
- saturation: parton production
 compensated by their fusion

- 'soft' (low p_t) partons fully saturated
- population dominated by 'hard' partons
- → very dense parton system can be described perturbatively

- similar physics content for all MC generators used in CR field:
 - multiple scattering
 - soft & hard processes
 - nonlinear effects, e.g. parton shadowing (not in all models)

< □ > < □ >

- similar physics content for all MC generators used in CR field:
 - multiple scattering
 - soft & hard processes
 - nonlinear effects, e.g. parton shadowing (not in all models)

< □ > < □ >

- similar physics content for all MC generators used in CR field:
 - multiple scattering
 - soft & hard processes
 - nonlinear effects, e.g. parton shadowing (not in all models)

- similar physics content for all MC generators used in CR field:
 - multiple scattering
 - soft & hard processes
 - nonlinear effects, e.g. parton shadowing (not in all models)

□ ▶ ◆ ミ ▶

- similar physics content for all MC generators used in CR field:
 - multiple scattering
 - soft & hard processes
 - nonlinear effects, e.g. parton shadowing (not in all models)
- representative models:
 - QGSJET (Kalmykov & SO, 1993–1997)
 - SIBYLL 1.7/2.1 (Ahn, Engel, Gaisser, Lipari & Stanev, 1994/1999)

- QGSJET II-03/04 (SO, 2006/2011)
- EPOS (Liu, Pierog & Werner, 2006-2011)

- similar physics content for all MC generators used in CR field:
 - multiple scattering
 - soft & hard processes
 - nonlinear effects, e.g. parton shadowing (not in all models)
- representative models:
 - QGSJET (Kalmykov & SO, 1993–1997)
 - SIBYLL 1.7/2.1 (Ahn, Engel, Gaisser, Lipari & Stanev, 1994/1999)
 - QGSJET II-03/04 (SO, 2006/2011)
 - EPOS (Liu, Pierog & Werner, 2006-2011)
- all the models based on similar ideas / qualitative approaches

- similar physics content for all MC generators used in CR field:
 - multiple scattering
 - soft & hard processes
 - nonlinear effects, e.g. parton shadowing (not in all models)
- representative models:
 - QGSJET (Kalmykov & SO, 1993–1997)
 - SIBYLL 1.7/2.1 (Ahn, Engel, Gaisser, Lipari & Stanev, 1994/1999)
 - QGSJET II-03/04 (SO, 2006/2011)
 - EPOS (Liu, Pierog & Werner, 2006-2011)
- all the models based on similar ideas / qualitative approaches
- differ in implementations, theory / phenomenology / brute force solutions, experimental input, number of parameters...

- describe 'elementary' interaction (parton cascade)
 - scattering amplitude
 - hadronization procedure (parton conversion into hadrons)
- treat multiple scattering aspect (e.g. using Reggeon formalism)
- perform energy-sharing between multiple interactions
- treat particle production for all 'elementary' interactions

- describe 'elementary' interaction (parton cascade)
 - scattering amplitude
 - hadronization procedure (parton conversion into hadrons)
- treat multiple scattering aspect (e.g. using Reggeon formalism)
- perform energy-sharing between multiple interactions
- treat particle production for all 'elementary' interactions

- describe 'elementary' interaction (parton cascade)
 - scattering amplitude
 - hadronization procedure (parton conversion into hadrons)
- treat multiple scattering aspect (e.g. using Reggeon formalism)
- perform energy-sharing between multiple interactions
- treat particle production for all 'elementary' interactions

- describe 'elementary' interaction (parton cascade)
 - scattering amplitude
 - hadronization procedure (parton conversion into hadrons)
- treat multiple scattering aspect (e.g. using Reggeon formalism)
- perform energy-sharing between multiple interactions
- treat particle production for all 'elementary' interactions

- describe 'elementary' interaction (parton cascade)
 - scattering amplitude
 - hadronization procedure (parton conversion into hadrons)
- treat multiple scattering aspect (e.g. using Reggeon formalism)
- perform energy-sharing between multiple interactions
- treat particle production for all 'elementary' interactions

- describe 'elementary' interaction (parton cascade)
 - scattering amplitude
 - hadronization procedure (parton conversion into hadrons)
- treat multiple scattering aspect (e.g. using Reggeon formalism)
- perform energy-sharing between multiple interactions
- treat particle production for all 'elementary' interactions

 based on combined treatment of soft & hard parton processes (implemented in QGSJET, QGSJET-II, EPOS)

< D > < B > < E >

 based on combined treatment of soft & hard parton processes (implemented in QGSJET, QGSJET-II, EPOS)

 based on combined treatment of soft & hard parton processes (implemented in QGSJET, QGSJET-II, EPOS)

 based on combined treatment of soft & hard parton processes (implemented in QGSJET, QGSJET-II, EPOS)

◆□ > ◆□ > ◆目 > ◆目 > ● 目 ● のへで
based on combined treatment of soft & hard parton processes (implemented in QGSJET, QGSJET-II, EPOS)

< D > < B > < E >

energy-dependence – driven by hard parton evolution

 based on combined treatment of soft & hard parton processes (implemented in QGSJET, QGSJET-II, EPOS)

- energy-dependence driven by hard parton evolution
- particle production:
 - perturbative cascade (for high p_t partons)
 - string hadronization (for soft partons)

 based on combined treatment of soft & hard parton processes (implemented in QGSJET, QGSJET-II, EPOS)

- \bullet important difference: parton saturation assumed at the $Q_0^2\mbox{-}{\rm scale}$
- \bullet \Rightarrow no soft parton evolution for semihard processes
- also: only 2-jet production for multiple rescatterings

 based on combined treatment of soft & hard parton processes (implemented in QGSJET, QGSJET-II, EPOS)

• also: only 2-jet production for multiple rescatterings

 based on combined treatment of soft & hard parton processes (implemented in QGSJET, QGSJET-II, EPOS)

- \Rightarrow no soft parton evolution for semihard processes
- also: only 2-jet production for multiple rescatterings

 based on combined treatment of soft & hard parton processes (implemented in QGSJET, QGSJET-II, EPOS)

- Q_0^2 -scale
- ullet \Rightarrow no soft parton evolution for semihard processes
- also: only 2-jet production for multiple rescatterings

- optical theorem: relates elastic amplitude to the full set of final states
- partial contributions of final states
 from different 'cut' diagrams
- based on AGK cutting rules: no interference between different final state configurations

- optical theorem: relates elastic amplitude to the full set of final states
- partial contributions of final states
 from different 'cut' diagrams
- based on AGK cutting rules: no interference between different final state configurations

- optical theorem: relates elastic amplitude to the full set of final states
- partial contributions of final states
 from different 'cut' diagrams
- based on AGK cutting rules: no interference between different final state configurations

- optical theorem: relates elastic amplitude to the full set of final states
- only amplitudes for 'elementary' interactions enter here
- \Rightarrow replace parton ladders by 'Pomerons'

- optical theorem: relates elastic amplitude to the full set of final states
- only amplitudes for 'elementary' interactions enter here
- ⇒ replace parton ladders by 'Pomerons'

- optical theorem: relates elastic amplitude to the full set of final states
- only amplitudes for 'elementary' interactions enter here
- \Rightarrow replace parton ladders by 'Pomerons'

• simple expressions obtained assuming eikonal vertices

- optical theorem: relates elastic amplitude to the full set of final states
- only amplitudes for 'elementary' interactions enter here
- $\bullet \Rightarrow {\sf replace parton ladders by} \\ {\sf 'Pomerons'}$

- simple expressions obtained assuming eikonal vertices
- e.g. cross section for *n* inelastic rescatterings:

$$\sigma_{ad}^{(n)}(s) = \int d^2b \; \frac{[2\chi_{ad}^{\mathbb{P}}(s,b)]^n}{n!} \, e^{-2\chi_{ad}^{\mathbb{P}}(s,b)}$$

 $(\chi_{ad}^{\mathbb{P}}$ – Pomeron exchange eikonal)

- optical theorem: relates elastic amplitude to the full set of final states
- only amplitudes for 'elementary' interactions enter here
- ⇒ replace parton ladders by 'Pomerons'

- simple expressions obtained assuming eikonal vertices
- e.g. cross section for *n* inelastic rescatterings:

$$\int 2\chi^{\mathbb{P}}_{ad}(s,b)]^n = 2\chi^{\mathbb{P}}_{ad}(s,b)$$

EPOS model goes beyond the eikonal approach

- optical theorem: relates elastic amplitude to the full set of final states
- only amplitudes for 'elementary' interactions enter here
- ⇒ replace parton ladders by 'Pomerons'

- simple expressions obtained assuming eikonal vertices
- e.g. cross section for *n* inelastic rescatterings:

$$\int \left[2\chi^{\mathbb{P}}_{ad}(s,b) \right]^n = 2\gamma^{\mathbb{P}}_{ad}(s,b)$$

EPOS model goes beyond the eikonal approach

(n

• energy-momentum correlations between multiple rescatterings taken into account

- optical theorem: relates elastic amplitude to the full set of final states
- only amplitudes for 'elementary' interactions enter here
- \Rightarrow replace parton ladders by 'Pomerons'

Instead of the simple eikonal formula one has

$$\begin{split} \Omega^{(s_N n, b)}_{AB}(m, X^+, X^-) &= \\ \prod_{k=1}^{AB} \left\{ \frac{1}{m_k!} \prod_{\mu=1}^{m_k} G_k(x_{k,\mu}^+, x_{k,\mu}^-, s_{NN}, b_k) \right\} \Phi_{AB} \left(x^{\text{proj}}, x^{\text{targ}}, s_{NN}, b \right), \\ \Phi_{AB} \left(x^{\text{proj}}, x^{\text{targ}}, s_{NN}, b \right) &= \sum_{l_1} \dots \sum_{l_{AB}} \\ \times \int \prod_{k=1}^{AB} \left\{ \prod_{\lambda=1}^{l_k} d\tilde{x}_{k,\lambda}^+ d\tilde{x}_{k,\lambda}^- \right\} \prod_{k=1}^{AB} \left\{ \frac{1}{l_k!} \prod_{\lambda=1}^{l_k} -G_k(\tilde{x}_{k,\lambda}^+, \tilde{x}_{k,\lambda}^-, s_{NN}, b_k) \right\} \\ \times \prod_{i=1}^{A} F_{\text{remn}} \left(x_i^{\text{proj}} - \sum_{\pi(k)=i} \tilde{x}_{k,\lambda}^+ \right) \prod_{j=1}^{B} F_{\text{remn}} \left(x_j^{\text{targ}} - \sum_{\tau(k)=j} \tilde{x}_{k,\lambda}^- \right). \end{split}$$

- optical theorem: relates elastic amplitude to the full set of final states
- only amplitudes for 'elementary' interactions enter here
- ⇒ replace parton ladders by 'Pomerons'

- simple expressions obtained assuming eikonal vertices
- e.g. cross section for *n* inelastic rescatterings:

$$(\sum_{a,b} \int 2x^{\mathbb{P}}_{ad}(s,b)]^n = -2\gamma^{\mathbb{P}}_{ab}(s,b)$$

EPOS model goes beyond the eikonal approach

- energy-momentum correlations between multiple rescatterings taken into account
- results in harder spectra of secondary hadrons (e.g. π^0 s)

- not included in the old QGSJET
 - high price to pay: 'flat' (pre-HERA) parton distributions used

- not included in the old QGSJET
 - high price to pay: 'flat' (pre-HERA) parton distributions used

- not included in the old QGSJET
 - high price to pay: 'flat' (pre-HERA) parton distributions used
- SIBYLL: energy-dependent Q_0^2 -cutoff for minijet production
 - no dynamical treatment, no b-dependence
 - doesn't affect soft processes

- not included in the old QGSJET
 - high price to pay: 'flat' (pre-HERA) parton distributions used
- SIBYLL: energy-dependent Q_0^2 -cutoff for minijet production
 - no dynamical treatment, no b-dependence
 - doesn't affect soft processes

- not included in the old QGSJET
 - high price to pay: 'flat' (pre-HERA) parton distributions used
- SIBYLL: energy-dependent Q_0^2 -cutoff for minijet production
 - no dynamical treatment, no b-dependence
 - doesn't affect soft processes

- not included in the old QGSJET
 - high price to pay: 'flat' (pre-HERA) parton distributions used
- SIBYLL: energy-dependent Q_0^2 -cutoff for minijet production
 - no dynamical treatment, no b-dependence
 - doesn't affect soft processes
- EPOS: via parametrized weights for different configurations
 - energy- & b-dependent treatment
 - however: weak predictive power

- not included in the old QGSJET
 - high price to pay: 'flat' (pre-HERA) parton distributions used
- SIBYLL: energy-dependent Q_0^2 -cutoff for minijet production
 - no dynamical treatment, no b-dependence
 - doesn't affect soft processes
- EPOS: via parametrized weights for different configurations
 - energy- & *b*-dependent treatment
 - however: weak predictive power

- not included in the old QGSJET
 - high price to pay: 'flat' (pre-HERA) parton distributions used
- SIBYLL: energy-dependent Q_0^2 -cutoff for minijet production
 - no dynamical treatment, no b-dependence
 - doesn't affect soft processes
- EPOS: via parametrized weights for different configurations
 - energy- & b-dependent treatment
 - however: weak predictive power

- not included in the old QGSJET
 - high price to pay: 'flat' (pre-HERA) parton distributions used
- SIBYLL: energy-dependent Q_0^2 -cutoff for minijet production
 - no dynamical treatment, no b-dependence
 - doesn't affect soft processes
- EPOS: via parametrized weights for different configurations
 - energy- & b-dependent treatment
 - however: weak predictive power
- QGSJET-II: full resummation of Pomeron-Pomeron interaction diagrams
 - fully dynamical treatment
 - but: based on 'soft' Pomeron coupling
 - $\bullet \ \Rightarrow$ no evolution for the saturation scale

- not included in the old QGSJET
 - high price to pay: 'flat' (pre-HERA) parton distributions used
- SIBYLL: energy-dependent Q_0^2 -cutoff for minijet production
 - no dynamical treatment, no b-dependence
 - doesn't affect soft processes
- EPOS: via parametrized weights for different configurations
 - energy- & b-dependent treatment
 - however: weak predictive power
- QGSJET-II: full resummation of Pomeron-Pomeron interaction diagrams
 - fully dynamical treatment
 - but: based on 'soft' Pomeron coupling
 - $\bullet \ \Rightarrow$ no evolution for the saturation scale

- not included in the old QGSJET
 - high price to pay: 'flat' (pre-HERA) parton distributions used
- SIBYLL: energy-dependent Q_0^2 -cutoff for minijet production
 - no dynamical treatment, no b-dependence
 - doesn't affect soft processes
- EPOS: via parametrized weights for different configurations
 - energy- & b-dependent treatment
 - however: weak predictive power
- QGSJET-II: full resummation of Pomeron-Pomeron interaction diagrams
 - fully dynamical treatment
 - but: based on 'soft' Pomeron coupling
 - ullet \Rightarrow no evolution for the saturation scale

- not included in the old QGSJET
 - high price to pay: 'flat' (pre-HERA) parton distributions used
- SIBYLL: energy-dependent Q_0^2 -cutoff for minijet production
 - no dynamical treatment, no b-dependence
 - doesn't affect soft processes
- EPOS: via parametrized weights for different configurations
 - energy- & b-dependent treatment
 - however: weak predictive power
- QGSJET-II: full resummation of Pomeron-Pomeron interaction diagrams
 - fully dynamical treatment
 - but: based on 'soft' Pomeron coupling
 - $\bullet \ \Rightarrow$ no evolution for the saturation scale

- not included in the old QGSJET
 - high price to pay: 'flat' (pre-HERA) parton distributions used
- SIBYLL: energy-dependent Q_0^2 -cutoff for minijet production
 - no dynamical treatment, no b-dependence
 - doesn't affect soft processes
- EPOS: via parametrized weights for different configurations
 - energy- & b-dependent treatment

- treatment of hadronic 'remnants' (excitation, hadronization)
- details of string fragmentation (conversion of color field into hadrons)
- and many other things which make model predictions so different

- not included in the old QGSJET
 - high price to pay: 'flat' (pre-HERA) parton distributions used
- SIBYLL: energy-dependent Q_0^2 -cutoff for minijet production
 - no dynamical treatment, no b-dependence
 - doesn't affect soft processes
- EPOS: via parametrized weights for different configurations
 - energy- & b-dependent treatment

- treatment of hadronic 'remnants' (excitation, hadronization)
- details of string fragmentation (conversion of color field into hadrons)
- and many other things which make model predictions so different

- not included in the old QGSJET
 - high price to pay: 'flat' (pre-HERA) parton distributions used
- SIBYLL: energy-dependent Q_0^2 -cutoff for minijet production
 - no dynamical treatment, no b-dependence
 - doesn't affect soft processes
- EPOS: via parametrized weights for different configurations
 - energy- & b-dependent treatment

- treatment of hadronic 'remnants' (excitation, hadronization)
- details of string fragmentation (conversion of color field into hadrons)
- and many other things which make model predictions so different

- not included in the old QGSJET
 - high price to pay: 'flat' (pre-HERA) parton distributions used
- SIBYLL: energy-dependent Q_0^2 -cutoff for minijet production
 - no dynamical treatment, no b-dependence
 - doesn't affect soft processes
- EPOS: via parametrized weights for different configurations
 - energy- & *b*-dependent treatment

- treatment of hadronic 'remnants' (excitation, hadronization)
- details of string fragmentation (conversion of color field into hadrons)
- and many other things which make model predictions so different

Violation of Feynman scaling & LHCf data

 QGSJET-II: strong violation of Feynman scaling due to nonlinear effects

Violation of Feynman scaling & LHCf data

- QGSJET-II: strong violation of Feynman scaling due to nonlinear effects
- SIBYLL: only weak scaling violation in forward spectra

Violation of Feynman scaling & LHCf data

- QGSJET-II: strong violation of Feynman scaling due to nonlinear effects
- SIBYLL: only weak scaling violation in forward spectra
- \Rightarrow difference between the two results rises with energy

ロト (日) (王) (王) (王) (の)
Violation of Feynman scaling & LHCf data

- QGSJET-II: strong violation of Feynman scaling due to nonlinear effects
- SIBYLL: only weak scaling violation in forward spectra
- ullet \Rightarrow difference between the two results rises with energy

Violation of Feynman scaling & LHCf data

- QGSJET-II: strong violation of Feynman scaling due to nonlinear effects
- SIBYLL: only weak scaling violation in forward spectra
- ullet \Rightarrow difference between the two results rises with energy

- UHECR energy determination: based on model results for 'missing energy' *E*_{miss}
- impact of LHCf: dominant uncertainty for E_{miss} – due to unknown CR composition

<ロ> <同> <同> <三>

- UHECR energy determination: based on model results for 'missing energy' *E*_{miss}
- impact of LHCf: dominant uncertainty for $E_{\rm miss}$ – due to unknown CR composition

<ロ> <同> <同> <三>

- UHECR energy determination: based on model results for 'missing energy' *E*_{miss}
- impact of LHCf: dominant uncertainty for E_{miss} – due to unknown CR composition

• EAS muon content depends on forward spectra of π^{\pm}

- UHECR energy determination: based on model results for 'missing energy' *E*_{miss}
- impact of LHCf: dominant uncertainty for E_{miss} – due to unknown CR composition

- EAS muon content depends on forward spectra of π^\pm
- e.g. strong scaling violation \Rightarrow less muons produced
 - softer pion spectra ⇒ pion decay more probable ⇒ smaller number of cascade steps

- UHECR energy determination: based on model results for 'missing energy' *E*_{miss}
- impact of LHCf: dominant uncertainty for E_{miss} – due to unknown CR composition

- EAS muon content depends on forward spectra of π^\pm
- e.g. strong scaling violation \Rightarrow less muons produced
 - softer pion spectra ⇒ pion decay more probable
 ⇒ smaller number of cascade steps

- UHECR energy determination: based on model results for 'missing energy' *E*_{miss}
- impact of LHCf: dominant uncertainty for E_{miss} – due to unknown CR composition

- EAS muon content depends on forward spectra of π^\pm
- e.g. strong scaling violation \Rightarrow less muons produced
 - softer pion spectra ⇒ pion decay more probable ⇒ smaller number of cascade steps
 - now constrained by LHCf

QGSJET-**II/SIBYLL**: differences up to factor 6 for dN_{γ}/dx

- minor enhancement of low p_t -s in QGS-II
- $\bullet \Rightarrow$ dominant effect - stronger scaling violation in QGS-II
- $8.8 < \eta < 9$: larger model differences
- $\eta > 11$: reversed trend – p_t -effect $(\langle p_t \rangle \sim \text{MeV})$

200

▶ 三 つへ

- LHCf acceptance: for x_F > 0.1 (η-tails for E_γ < 500 GeV)
- model excess at $E_{\gamma} < 500 \text{ GeV} \text{possibly due to}$ p_{t} -dependence
- best measurement interval: η ~ 8÷9
 - → results for $8.8 < \eta < 9$ give good measure of scaling violation

- LHCf acceptance: for x_F > 0.1 (η-tails for E_γ < 500 GeV)
- model excess at $E_{\gamma} < 500 \text{ GeV} \text{possibly due to} p_t$ -dependence
- best measurement interval: η ~ 8÷9
 - ⇒ results for 8.8 < η < 9 give good measure of scaling violation

- LHCf acceptance: for x_F > 0.1 (η-tails for E_γ < 500 GeV)
- model excess at $E_{\gamma} < 500 \text{ GeV} \text{possibly due to}$ p_t -dependence
- best measurement interval: η ~ 8÷9
 - ⇒ results for $8.8 < \eta < 9$ give good measure of scaling violation

- LHCf acceptance: for x_F > 0.1 (η-tails for E_γ < 500 GeV)
- model excess at $E_{\gamma} < 500 \text{ GeV} \text{possibly due to}$ p_t -dependence
- best measurement interval: η ~ 8÷9
- → results for 8.8 < η < 9 give good measure of scaling violation

- LHCf acceptance: for x_F > 0.1 (η-tails for E_γ < 500 GeV)
- model excess at $E_{\gamma} < 500 \text{ GeV} \text{possibly due to}$ p_{t} -dependence
- best measurement interval: $\eta \sim 8 \div 9$
 - → results for $8.8 < \eta < 9$ give good measure of scaling violation

however: p_t- (η-) integration desirable to improve the comparison with/between the models

LHCf: partial contributions to forward spectra of γ s

LHCf: partial contributions to forward spectra of γ s

LHCf: partial contributions to forward spectra of γ s

• shower maximum position: defined by $\sigma_{p-\text{air}}^{\text{inel}}$, $\sigma_{p-\text{air}}^{\text{diffr}}$ & $K_{p-\text{air}}^{\text{inel}}$

• shower maximum position: defined by $\sigma_{p-\text{air}}^{\text{inel}}$, $\sigma_{p-\text{air}}^{\text{diffr}}$ & $K_{p-\text{air}}^{\text{inel}}$

<ロ> (日) (日) (日) (日) (日)

• now: σ_{pp}^{tot} , $\sigma_{pp}^{\text{el}} \& B_{pp}^{\text{el}}$ – measured by TOTEM \Rightarrow allow to obtain $\sigma_{p-\text{air}}^{\text{inel}}$ • shower maximum position: defined by $\sigma_{p-\text{air}}^{\text{inel}}$, $\sigma_{p-\text{air}}^{\text{diffr}}$ & $K_{p-\text{air}}^{\text{inel}}$

<ロ> (四) (四) (三) (三)

- now: σ_{pp}^{tot} , $\sigma_{pp}^{\text{el}} \& B_{pp}^{\text{el}}$ measured by TOTEM \Rightarrow allow to obtain $\sigma_{p-\text{air}}^{\text{inel}}$
- rate of inelastic diffraction can be inferred from σ^{vis}_{pp} (measured by ATLAS, CMS & ALICE)

Model uncertainties for X_{max}

- shower maximum position: defined by $\sigma_{p-\text{air}}^{\text{inel}}$, $\sigma_{p-\text{air}}^{\text{diffr}}$ & $K_{p-\text{air}}^{\text{inel}}$
- now: σ_{pp}^{tot} , $\sigma_{pp}^{\text{el}} \& B_{pp}^{\text{el}}$ measured by TOTEM \Rightarrow allow to obtain $\sigma_{p-\text{air}}^{\text{inel}}$
- rate of inelastic diffraction can be inferred from σ^{vis}_{pp} (measured by ATLAS, CMS & ALICE)

Model uncertainties for X_{max}

- shower maximum position: defined by $\sigma_{p-\text{air}}^{\text{inel}}$, $\sigma_{p-\text{air}}^{\text{diffr}}$ & $K_{p-\text{air}}^{\text{inel}}$
- now: σ_{pp}^{tot} , $\sigma_{pp}^{\text{el}} \& B_{pp}^{\text{el}}$ measured by TOTEM \Rightarrow allow to obtain $\sigma_{p-\text{air}}^{\text{inel}}$
- rate of inelastic diffraction can be inferred from σ^{vis}_{pp} (measured by ATLAS, CMS & ALICE)

Not enough!

- e.g. QGSJET & QGSJET-II-04 both roughly consistent with TOTEM & ATLAS (CMS) data
- but: differ in the predicted X_{max}

Model uncertainties for X_{max}

- shower maximum position: defined by $\sigma_{p-\text{air}}^{\text{inel}}$, $\sigma_{p-\text{air}}^{\text{diffr}}$ & $K_{p-\text{air}}^{\text{inel}}$
- now: σ_{pp}^{tot} , σ_{pp}^{el} & B_{pp}^{el} measured by TOTEM \Rightarrow allow to obtain σ_{p-air}^{inel}
- rate of inelastic diffraction can be inferred from σ^{vis}_{pp} (measured by ATLAS, CMS & ALICE)

Not enough!

- e.g. QGSJET & QGSJET-II-04 both roughly consistent with TOTEM & ATLAS (CMS) data
- but: differ in the predicted X_{max}
- forward spectra of nucleons?

LHCf has good potential to discriminate between models
Leading nucleon 'stopping' & LHCf

- LHCf has good potential to discriminate between models
- and to probe both nondiffractive baryon 'stopping' & diffraction

contemporary CR interaction models – quite advanced

- but: remain phenomenological ones
- $\bullet\,\,\Rightarrow\,$ model tests / improvements with collider data desirable

個 と く ヨ と く ヨ と

contemporary CR interaction models – quite advanced

- but: remain phenomenological ones
- $\bullet\,\Rightarrow$ model tests / improvements with collider data desirable

<ロ> (四) (四) (三) (三)

contemporary CR interaction models – quite advanced

- but: remain phenomenological ones
- $\bullet\,\Rightarrow$ model tests / improvements with collider data desirable

(4回) (三) (三)

- contemporary CR interaction models quite advanced
 - but: remain phenomenological ones
 - $\bullet\,\,\Rightarrow\,$ model tests / improvements with collider data desirable

個 と く ヨ と く ヨ と

- Inow: limits on Feynman scaling violation set by LHCf
 - constrain model predictions
 - seriously limit uncertainties for EAS properties

- contemporary CR interaction models quite advanced
 - but: remain phenomenological ones
 - $\bullet\,\,\Rightarrow\,$ model tests / improvements with collider data desirable

- **2** now: limits on Feynman scaling violation set by LHCf
 - constrain model predictions
 - seriously limit uncertainties for EAS properties

- contemporary CR interaction models quite advanced
 - but: remain phenomenological ones
 - $\bullet\,\,\Rightarrow\,$ model tests / improvements with collider data desirable

- ow: limits on Feynman scaling violation set by LHCf
 - constrain model predictions
 - seriously limit uncertainties for EAS properties

- contemporary CR interaction models quite advanced
 - but: remain phenomenological ones
 - $\bullet\,\Rightarrow$ model tests / improvements with collider data desirable
- **2** now: limits on Feynman scaling violation set by LHCf
 - constrain model predictions
 - seriously limit uncertainties for EAS properties
- **③** next crucial step: constraining X_{max} predictions
 - important input from TOTEM, ATLAS, CMS & ALICE on $\sigma_{inel},\,\sigma_{diffr}$

<ロ> (四) (四) (三) (三)

• and: LHCf has the potential to constrain Kinel

- contemporary CR interaction models quite advanced
 - but: remain phenomenological ones
 - $\bullet\,\Rightarrow$ model tests / improvements with collider data desirable
- ow: limits on Feynman scaling violation set by LHCf
 - constrain model predictions
 - seriously limit uncertainties for EAS properties
- **③** next crucial step: constraining X_{max} predictions
 - important input from TOTEM, ATLAS, CMS & ALICE on $\sigma_{inel},\,\sigma_{diffr}$

・ロト ・同ト ・ヨト ・ヨト

• and: LHCf has the potential to constrain Kinel

- contemporary CR interaction models quite advanced
 - but: remain phenomenological ones
 - $\bullet\,\Rightarrow$ model tests / improvements with collider data desirable
- ow: limits on Feynman scaling violation set by LHCf
 - constrain model predictions
 - seriously limit uncertainties for EAS properties
- **③** next crucial step: constraining X_{max} predictions
 - important input from TOTEM, ATLAS, CMS & ALICE on $\sigma_{inel},\,\sigma_{diffr}$

・ロト ・同ト ・ヨト ・ヨト

• and: LHCf has the potential to constrain K_{inel}

- contemporary CR interaction models quite advanced
 - but: remain phenomenological ones
 - $\bullet\,\Rightarrow$ model tests / improvements with collider data desirable
- Inow: limits on Feynman scaling violation set by LHCf
 - constrain model predictions
 - seriously limit uncertainties for EAS properties
- **③** next crucial step: constraining X_{max} predictions
 - important input from TOTEM, ATLAS, CMS & ALICE on $\sigma_{inel},\,\sigma_{diffr}$
 - and: LHCf has the potential to constrain Kinel
- Inture theoretical progress: from perturbative treatment of 'dense' parton systems (e.g. using saturation/ CGC models)