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similar physics content for all MC generators used in CR field:

multiple scattering

soft & hard processes

nonlinear effects, e.g. parton shadowing (not in all models)

representative models:

QGSJET (Kalmykov & SO, 1993–1997)

SIBYLL 1.7/2.1 (Ahn, Engel, Gaisser, Lipari & Stanev,
1994/1999)

QGSJET II-03/04 (SO, 2006/2011)

EPOS (Liu, Pierog & Werner, 2006-2011)

all the models based on similar ideas / qualitative approaches

differ in implementations, theory / phenomenology / brute
force solutions, experimental input, number of parameters...
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Multiple scattering approach

optical theorem: relates elastic
amplitude to the full set of final states

only amplitudes for ’elementary’
interactions enter here

⇒ replace parton ladders by
’Pomerons’

...

simple expressions obtained assuming eikonal vertices

e.g. cross section for n inelastic rescatterings:

σ(n)
ad (s) =

Z

d2b
[2χP

ad(s,b)]n

n!
e−2χP

ad(s,b)

(χP

ad – Pomeron exchange eikonal)

EPOS model goes beyond the eikonal approach

energy-momentum correlations between multiple rescatterings
taken into account

results in harder spectra of secondary hadrons (e.g. π0s)
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Violation of Feynman scaling & EAS properties

UHECR energy determination:
based on model results for
’missing energy’ Emiss

impact of LHCf: dominant
uncertainty for Emiss – due to
unknown CR composition

EAS muon content depends on forward spectra of π±

e.g. strong scaling violation ⇒ less muons produced

softer pion spectra ⇒ pion decay more probable
⇒ smaller number of cascade steps

now constrained by LHCf



Few comments about LHCf data
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possibly due to
pt-dependence

best measurement
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⇒ results for
8.8 < η < 9 give
good measure of
scaling violation

however: pt- (η-) integration desirable to improve the
comparison with/between the models
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pp – measured by TOTEM
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rate of inelastic diffraction – can be inferred from σvis
pp

(measured by ATLAS, CMS & ALICE)

Not enough!

e.g. QGSJET & QGSJET-II-04
both roughly consistent with
TOTEM & ATLAS (CMS) data

but: differ in the predicted Xmax

forward spectra of nucleons?
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back to models:
huge differences for
neutron spectra

LHCf has good potential to discriminate between models

and to probe both nondiffractive baryon ’stopping’ &
diffraction
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Summary

1 contemporary CR interaction models – quite advanced

but: remain phenomenological ones

⇒ model tests / improvements with collider data desirable

2 now: limits on Feynman scaling violation set by LHCf

constrain model predictions

seriously limit uncertainties for EAS properties

3 next crucial step: constraining Xmax predictions

important input from TOTEM, ATLAS, CMS & ALICE on
σinel, σdiffr

and: LHCf has the potential to constrain Kinel

4 future theoretical progress: from perturbative treatment of
’dense’ parton systems (e.g. using saturation/ CGC models)


