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Extensive Air Shower (EAS) techniques of CR detection

High energy cosmic rays — studied via measurements of air showers
(nuclear-e/m cascades induced by CR particles)
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Nucleus-induced air showers & superposition model

For average (only!) air shower characteristics: A—induced EAS of
energy E — equivalent to A proton-induced showers of energy E/A

@ N of 'wounded' nucleons per collision: (va) :AG'”e'a,r/G[&‘d
(valid up to target diffraction)

ar
2 inel inel

@ nuclear m.f.p. is cp—air/oA—air shorter
. . - oine

@ however, each nucleon interacts with probability: Wiy = ,‘;d

O air

o = (Xfha(E)) = (Xhax(E/A)); (N, (E)) = A-(Ng, (E/A))
o (XRax(E)) ~ const +ERINE, ER= d(Xha(E))/dE;
p

ar

NB: CR composition studles = by comparlng with model predictions

@ = depend crucially on the correctness of model description
@ experiments measure EAS properties for individual showers

@ = shower-to-shower fluctuations have to be described
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@ similar physics content for all MC generators used in CR field:
e multiple scattering
@ soft & hard processes

s nonlinear effects, e.g. parton shadowing (not in all models)
@ representative models:

@ QGSJET (Kalmykov & SO, 1993-1997)

s SIBYLL 1.7/2.1 (Ahn, Engel, Gaisser, Lipari & Stanev,
1994/1999)

o QGSJET 11-03/04 (SO, 2006,/2011)
@ EPOS (Liu, Pierog & Werner, 2006-2011)

@ all the models based on similar ideas / qualitative approaches

o differ in implementations, theory / phenomenology / brute
force solutions, experimental input, number of parameters...
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'Semihard Pomeron' approach for 'soft’ / 'hard’ collisions

@ based on combined treatment of soft & hard parton processes
(implemented in QGSJET, QGSJET-II, EPOS)

@ soft processes (g7 < Q3):

SR FOmEET 'soft Pomeron’

Qcpladder @ hard processes (g2 > Q3):
= i DGLAP formalism

@ taken together:
soft Pomeron 0 a D
semihard Pomeron

@ energy-dependence — driven by hard parton evolution

@ particle production:
o perturbative cascade (for high p; partons)

@ string hadronization (for soft partons)
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Multiple scattering approach

@ optical theorem: relates elastic
amplitude to the full set of final states

@ only amplitudes for 'elementary’
interactions enter here

@ = replace parton ladders by
'Pomerons’

Instead of the simple eikonal formula one has
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Multiple scattering approach

)

EPOS model goes beybnd the eikonal approaéh

)

)

optical theorem: relates elastic
amplitude to the full set of final states

only amplitudes for 'elementary’
interactions enter here

= replace parton ladders by
'Pomerons’

simple expressions obtained assuming eikonal vertices

e.g. cross section for n inelastic rescatterings:

2% (s,b)]"

energy-momentum correlations between multiple rescatterings
taken into account

results in harder spectra of secondary hadrons (e.g. Ts)
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Violation of Feynman scaling & LHCf data

@ QGSJET-II: strong violation of Feynman scaling due to
nonlinear effects
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@ QGSJET-II: strong violation of Feynman scaling due to
nonlinear effects

@ SIBYLL: only weak scaling violation in forward spectra
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Violation of Feynman scaling & LHCf data

@ QGSJET-II: strong violation of Feynman scaling due to
nonlinear effects

@ SIBYLL: only weak scaling violation in forward spectra

@ = difference between the two results rises with energy
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@ QGSJET-II: strong violation of Feynman scaling due to
nonlinear effects

@ SIBYLL: only weak scaling violation in forward spectra

@ = difference between the two results rises with energy
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Violation of Feynman scaling & EAS properties

® QGSIET 01
SIBYLL 2.1

@ UHECR energy determination:
based on model results for
'missing energy’ Episs

@ impact of LHCf: dominant
uncertainty for Epjss — due to
unknown CR composition s e < B

v (E /eV
InLulllmi\P

@ EAS muon content depends on forward spectra of Tt

@ e.g. strong scaling violation = less muons produced

@ softer pion spectra = pion decay more probable
= smaller number of cascade steps

@ now constrained by LHCf
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LHCf: n-dependence in fixed Xg-windows
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LHCf: n-dependence in fixed Xg-windows

dn/dn

ptpa7Tevem. -y

dl energies

SIBYLL 2.1/ QGSIET II-04

......

< 1B00<E <2500 \oe

8 10 12
N

@ LHCf acceptance:

for xg > 0.1 (n-tails
for Ey < 500 GeV)

model excess at
Ey <500 GeV -
possibly due to
pi-dependence

best measurement
interval: N ~8-+9

= results for

8.8<n<9give
good measure of
scaling violation

@ however: pi- (N-) integration desirable to improve the

comparison with/between the models
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o forward y-spectra —
mainly hadronization
of 'soft’ partons
('soft’ strings)

@ small contribution of
proton 'remnants’
(both diffractive &
ND interactions)

@ hadronization of
high p; partons —
unobservable by
LHCf
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Model uncertainties for Xmax

@ shower maximum position: defined by O:O”_G'air, Ggi_ff;ir & Kip”_e'air
® now: ol of & Bg'p_ — measured by TOTEM
= allow to obtain O-;C)n—elail'
@ rate of inelastic diffraction — can be inferred from G‘F’,ips
(measured by ATLAS, CMS & ALICE)

850 |- p-induced EAS

o e.g QGSJET & QGSJET-I-04 x ™
both roughly consistent with :
TOTEM & ATLAS (CMS) data

@ but: differ in the predicted Xmnax 700

= QGSJET-II-04
| Lol

18 19
@ forward spectra of nucleons? 10 10

E, (eV)
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Leading nucleon 'stopping’ & LHCf

'3j ptpat 7 TeV cm. - n

=
o

@ spectra of protons &
neutrons — similar

SIBYLL 2.1/ QGSJET |1-04

dn/dE (Gev™)

=
o

@ even more so without
target diffraction

@ or for non-diffractive

10 . .
Interactions

@ back to models:
huge differences for

1000 2000 3000 neutron spectra
E (GeV)

-6
10

@ LHCf has good potential to discriminate between models

@ and to probe both nondiffractive baryon 'stopping’ &
diffraction
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© contemporary CR interaction models — quite advanced
¢ but: remain phenomenological ones

s = model tests / improvements with collider data desirable

© now: limits on Feynman scaling violation set by LHCf
@ constrain model predictions

@ seriously limit uncertainties for EAS properties

© next crucial step: constraining Xnax predictions

o important input from TOTEM, ATLAS, CMS & ALICE on
Oinel, Odiffr
@ and: LHCf has the potential to constrain Kjng

@ future theoretical progress: from perturbative treatment of
'dense’ parton systems (e.g. using saturation/ CGC models)



