Status of SuperKEKB/Belle-II project

Hiroyuki Nakayama (KEK) 2011.07.13 ICRR seminar

- KEKB and Belle: successful
- Physics prospects for Super B factory
- Status of SuperKEKB/Belle-II
- Beam background estimation

KEK and KEKB

Belle/KEKB Integrated luminosity passed 1000 fb⁻¹ (\rightarrow have to switch to new units, 1 ab⁻¹)

Peak lumi record at KEKB: L=2.1 x 10³⁴/cm²/sec with crab cavities

KEKB tunnel tour: Electron gun

KEKB tunnel tour: Positron source

KEKB tunnel tour: LINAC (Injector)

Branches at the end of LINAC

KEKB tunnel tour: Beam Transport Line

5m below ground \rightarrow 11m

KEKB tunnel tour: Into the Main Ring

KEKB tunnel tour: Arc Section

KEKB tunnel tour: Interaction Region

Belle Detector

Important features of Belle detector

General features in HEP experiment:
measure trajectory and momentum of charged particle
measure energy of gamma
identify muon
...

+ Special features for B-physics
Measure the <u>decay vertex position</u> of B meson (asymmetric beam energy)
Particle identification (K/π)
...

Why Do We Need an Asymmetric Collider?

- In order to measure time we must measure distance: t=L/v.
- How far do B mesons travel after being produced by the Y(4S) (at rest) at a symmetric e⁺e⁻ collider?
- At a symmetric collider we have for the B mesons from Y(4S) decay:
- $p_{lab} = 0.3 \text{ GeV}, m_B = 5.28 \text{ GeV}$ Average flight distance <L>= ($\beta\gamma$)c τ_B = (p/m)(468 μ m)=(0.3/5.28)(468 μ m)=(27 μ m) This is too small to measure!!
- If the beams have unequal energies then the entire system is Lorentz Boosted: $\beta\gamma = p_{lab} / E_{cm} = (p_{high} - p_{low}) / E_{cm}$ SLAC: 9 GeV+3.1 GeV $\beta\gamma = 0.55 < L > = 257 \mu m$ KEK: 8 GeV+3.5 GeV $\beta\gamma = 0.42 < L > = 197 \mu m$ We can measure these decay distances ! Because of the boost and the small p_{lab} the time measurement is a z measurement.

"Golden mode": $B \rightarrow J/\psi K_s^0$

B→J/ ψ K_s TCPV measurement is a good test of KM theory! Advocated by Bigi, Carter, and Sanda (1980)

Both B^0 and \overline{B}^0 can decay to $J/\psi K_s$.

$B^0 \rightarrow \overline{B}^0$ mixing

Time-dependent CP asymmetry

$$|B^{0}(t)\rangle = e^{-\frac{\Gamma t}{2}} \left\{ \cos\left(\frac{\Delta mt}{2}\right) |B^{0}\rangle + e^{i\left(\frac{\pi}{2} - 2\phi_{1}\right)} \sin\left(\frac{\Delta mt}{2}\right) |\overline{B}^{0}\rangle \right\} \qquad i = e^{i\frac{\pi}{2}} CP|J/\psi K_{s}^{0}\rangle = -|J/\psi K_{s}^{0}\rangle \\ \left|\left\langle J/\psi K_{s}^{0} |B^{0}(t)\rangle\right|^{2} \propto e^{-\Gamma t} \left\{ 1 - \cos\left(\frac{\pi}{2} - 2\phi_{1}\right) \sin\Delta mt \right\} = e^{-\Gamma t} \left(1 - \sin 2\phi_{1} \sin\Delta mt\right) \\ \left|\left\langle J/\psi K_{s}^{0} |\overline{B}^{0}(t)\rangle\right|^{2} \propto e^{-\Gamma t} \left(1 + \sin 2\phi_{1} \sin\Delta mt\right) \right]$$
Asymmetry of CPV is:
$$\left|\left\langle J/\psi K_{s}^{0} |\overline{B}^{0}(t)\rangle\right|^{2} - \left|\left\langle J/\psi K_{s}^{0} |B^{0}(t)\rangle\right|^{2}$$
Time-dependent CP asymmetry (TCP)

$$Asym(t) = \frac{\left| \left\langle J / \psi K_{s} | \overline{B}^{0}(t) \right\rangle \right|^{2} - \left| \left\langle J / \psi K_{s}^{0} | \overline{B}^{0}(t) \right\rangle \right|^{2}}{\left| \left\langle J / \psi K_{s}^{0} | \overline{B}^{0}(t) \right\rangle \right|^{2} + \left| \left\langle J / \psi K_{s}^{0} | \overline{B}^{0}(t) \right\rangle \right|^{2}} = \sin 2\phi_{1} \sin \Delta mt$$

 A_{CP} oscillates as function of time, A_{CP} amplitude $\propto \sin 2\phi_1$

Decay Time difference Δt (ps)

<u>Event Displav of $B^0 \rightarrow J/\psi K_s$ </u>

Event Display of $B^0 \rightarrow J/\psi K_0^{(*)}$

First Observation: CPV in B

~20% error

Latest measurement of sin2 ϕ_1

Physics results achieved by Belle

Belle have made a wide variety of achievements over ~10 year running period:

- CKM triangle measurements
 - Matrix elements, Unitary triangle angles
- Direct CP violation:
 - $B \rightarrow K + \pi -, B \rightarrow \pi + \pi -$
- New hadronic states:
 - X, Y, Z mesons
- Rare probes of new physics $-b \rightarrow s \gamma, b \rightarrow s |+|-$

The last beam abort of KEKB on June 30, 2010

First physics run on June 2, 1999 Last physics run on June 30, 2010 $L_{peak} = 2.1 \times 10^{34} / \text{cm}^2 / \text{s}$ L > 1ab⁻¹

Happy end of a story,

but not the end of the B-factory.

Energy Frontier and Luminosity Frontier

Energy Frontier

Luminosity Frontier

Even if no new particles are found in Energy Frontier experiment (which is not exciting), Luminosity Frontier experiment can search for new physics. With more accumulated data, sensitivity to higher energy scale is achieved.

Flavor Physics: sensitivity to each NP model

Physics topic @ Belle-II

Just a few examples...

- Modes with missing energy: $B \rightarrow K \nu \bar{\nu}$
- Direct CP violation: $B \rightarrow K\pi$
- Mixing-induced CP violation: $b \rightarrow s\gamma$

– etc...

Many more available at: http://belle2.kek.jp/physics.html and arXiv:1002.5012

Features of Belle II detector@SuperKEKB

- High momentum PID with low fake rates to observe and study b→s and b→d penguins
- In contrast to LHCb, superb neutral detection capabilities.

e.g. $B \rightarrow K_s \pi^0 \gamma$ (to detect right-handed currents), Direct CPV in $B \rightarrow K_s^{0} \pi^0$

Capable of observing rare
 "missing energy modes" such as
 B→Kvv with B tags. Hermeticity is critical.

NP indication(?) seen with Belle-I

$sin2\phi_1$ in b \rightarrow sqq:

 $b \rightarrow sqq$ penguin

$$A \approx 0$$

$$S = -\xi_{\rm f} \sin 2\varphi_1$$

$sin2\phi_1$ in b \rightarrow sqq

 $b \rightarrow sqq$ penguin

g

 $A \approx 0$ S **≠** $-\xi_{\rm f} \sin 2\varphi_1$

Anomaly in 2003 and now

A_{CP} in b \rightarrow s transition @Belle-II

With 10-50 ab⁻¹ data, accuracy ~ O(0.01)

Can be used to distinguish several SUSY models.

SuperKEKB
SuperKEKB Luminosity Target

Accelerator upgrade

At SuperKEKB, we increase the luminosity based on

"Nano-Beam" scheme, which was originally proposed for SuperB by P. Raimondi.

$$L = \frac{\gamma_{\pm}}{2er_e} \left(1 + \frac{\sigma_y^*}{\sigma_x^*} \right) \frac{I_{\pm}\xi_{\pm y}}{\beta_{y'}^*} \left(\frac{R_L}{R_y} \right)$$

Luminosity Gain

- Vertical β function at IP: 5.9 \rightarrow 0.27/0.30 mm (x20)
- <u>Beam current</u>: $1.7/1.4 \rightarrow 3.6/2.6 \text{ A} (x2)$

→
$$L = 2x10^{34} \rightarrow 8x10^{35} \text{ cm}^{-2}\text{s}^{-1}$$
 (x40)

Dilemma in Straightforward Upgrade

Hourglass Effect

Bunch length must be well shorter than the vertical beam size. Otherwise collisions in skirts deteriorate luminosity (make even worse).

Coherent SR

Bunch length must be long enough so that the SR won't be coherent. CSR increases energy spread, beam size; and deteriorates luminosity.

Reaches a ceiling at L=2-6 × 10^{35} cm⁻²s⁻¹

Collision Scheme

Vertical beta function at IP can be squeezed to ${\sim}300\mu m.$ Need small horizontal beam size at IP.

 \rightarrow low emittance, small horizontal beta function at IP.

Machine Design Parameters

parameters		KEKB		SuperKEKB		
		LER	HER	LER	HER	units
Beam energy	Eb	3.5	8	4	7.007	GeV
Half crossing angle	φ	11		41.5		mrad
# of Bunches	Ν	1584		2500		
Horizontal emittance	٤x	18	24	3.2	5.3	nm
Emittance ratio	κ	0.88	0.66	0.27	0.24	%
Beta functions at IP	β_x^*/β_y^*	1200/5.9		32/0.27	25/0.30	mm
Beam currents	l _b	1.64	1.19	3.6	2.6	А
beam-beam param.	ξy	0.129	0.090	0.0886	0.081	
Bunch Length	σz	6.0	6.0	6.0	5.0	mm
Horizontal Beam Size	σ×*	150	150	10	11	um
Vertical Beam Size	σy*	0.94		0.048	0.062	um
Luminosity	L	2.1 x 10 ³⁴		8 x 10 ³⁵		cm ⁻² s ⁻¹

Major Items to Upgrade

- Rebuild IR
- Optics improvements:
 - Tsukuba straight section
 - Arcs
 - Wiggler sections
- Magnets
 - Build or rearrange many magnets
 - Survey and alignment
- New LER beam pipes for electron-cloud suppression
- Strengthen RF system
- Improve speed and resolution of beam monitor and control system:
 - Position: BPMs, digital Bunch-by-bunch feedback
 - Size: (SRM, X-ray)
 - Collision monitors: Large Angle Beamstrahlung Monitor (G. Bonvicini)
 - Damping ring monitors
- Upgrade the injector linac and beam transport system
- Install a 1.1 GeV positron damping ring
- Increase capacity of cooling system for the magnets and vacuum system

Design Concept of SuperKEKB

- Re-use the KEKB tunnel.
- Re-use KEKB components as much as possible.
 - Preserve the present cells in HER.
 - Replace dipole magnets in LER, re-using other main magnets in the LER arcs.

Removal of ring magnets

Belle-II detector

Belle-I disassembly has finished

Beam Pipe and Vertex Detector extraction: on Nov. 10, 2010 Belle Detector Roll-out: Dec. 9, 2010 End-caps, CDC, B-ACC, TOF extraction: in Jan. 2011

Belle II Detector

KL and muon detector: Resistive Plate Counter (barrel) Scintillator + WLSF + MPPC (end-caps)

EM Calorimeter: CsI(TI), waveform sampling (barrel) Pure CsI + waveform sampling (end-caps)

electron (7GeV)

Beryllium beam pipe 2cm diameter

Vertex Detector 2 layers DEPFET + 4 layers DSSD

> Central Drift Chamber He(50%):C₂H₆(50%), Small cells, long lever arm, fast electronics

Particle Identification Time-of-Propagation counter (barrel) Prox. focusing Aerogel RICH (fwd)

positron (4GeV)

Detector upgrade

Detector upgrade

Belle-II vertex detector

54

Belle-II Particle Identification System

Completely different from Belle PID:

- better K/ π separation
- more tolerance for BG
- less material

(better calorimeter resolution)

B⁺ \rightarrow ρ⁺γ analysis

Interaction Region Design and Beam Background

Interaction region design

<Belle-II>

- Smaller beam pipe radius (r=15mm⇒10mm)
- Wider beam crossing angle
 (22mrad⇒83mrad)
- Pipe crotch starts from closer to IP, complicated structure
- New detector: PXD
 - (more cables&pipes)

PXD cables & pipes

IP beam pipe

Beam pipe mock up for cooling test

We need to remove ~80W by paraffin flow.

<Items to check>

- Laminar or turbulence?
- Required Paraffin flow rate?
- Tolerable pressure drop inside beam pipe?
- Paraffin temperature rise?
- Pump, pipes, valves, etc...

Cooling test

Beam background

At SuperKEKB with x40 larger Luminosity, beam Beam-origin O increase drastically. backgrou Touschek scattering Beam-gas scattering Synchrotron radiation e+ - Radiative Bhabha ev Luminosity dependent $\sigma \sim 50 \text{ nb}$ Radiative Bhabha event: spent e+/e-- 2-photon process event: $e+e-\rightarrow e+e-e+e$ Beam-beam scattering – etc... e

64

Background sources ~1. Scattered beam particles~

Touschek scattering

Intra-bunch scattering

- –Rate∝(beam size)-1
 - Vertical beam size: 0.94um→0.048/0.062um
 - Increase drastically (x20) at SuperKEKB
- –Rate∝(beam energy)-3
 - Beam energy asymmetry is relaxed: 3.5/8.0GeV→4.0/7.5GeV

Beam-gas scattering

- Scattering by remaining gas, Rate ∝IxP
- Vacuum level at SuperKEKB will be similar to KEKB, so less dangerous compared to Touschek scattering
- Vacuum level in IR region could be worse than KEKB, but particles scattered in IR region will be lost far downstream IP and will not be dangerous for the detector

Touschek/Beam-gas background

Shower

nower

Scattered e+/e- becomes offtrajectory and hit IR beam pipe. They creates not only EM shower but also <u>neutrons</u>.

Scattered

Scattered e-

Countermeasure: Collimators

Countermeasure: Heavy-metal shield

Loss position of LER Touschek background

LER Touschek loss positions with all horizontal collimators closed (0.9GHz e+@1.2m from IP)

-45

LER Touschek full simulation

Generated vertex of all MC particles

cles.m_productionVertex_x*MCParticles.m_productionVertex_x*MCParticles.m_productionVertex_y*MCParticles.m_productionVertex_x/abs(MCParticles.m_productionVertex_x)*MCParticles.m_productionVertex_x/abs(MCParticles.m_productionVertex_x)*MCParticles.m_productionVertex_x/abs(MCParticles.m_productionVertex_x)*MCParticles.m_productionVertex_x/abs(MCParticles.m_productionVertex_x)*MCParticles.m_productionVertex_x/abs

Simulated background hits on PXD

Neutron flux from LER Touschek

- γ s in showers hit nuclei and generate 1~2 neutrons per e+ via "Giant Dipole Resonance".
- e+ hitting point is INSIDE detector. Almost no space to put neutron shield.
- <u>0.9GHz e+ = few*10¹¹/cm2/year neutrons (1MeV equiv.)</u>:

 \rightarrow comparable to our assumption for detector R&D

Background sources ~2. Synchrotron radiation~

• ϕ 20mm $\rightarrow \phi$ 9mm collimation on incoming beam pipe

 Most of SR photons are stopped by the collimation and direct hits on IP beam pipe is negligible

• HOM can escape from outgoing beam pipe

• To hide IP beam pipe from reflected SR, "ridge" structure on inner surface of collimation part.

"Ridge" structure

Background sources (cntd.) **~3. Luminosity dependent~**

Radiative Bhabha

- Rate∝Luminosity (KEKBx40),
- EM shower from spent e+/e-:
 hit position is very far (~10m) from IP,
- Neutrons from emitted γ (hitting downstream magnet) ^{Bhabha scattering} Main BG for KLM. Need to increase neutron shields in the tunnel

2-photon process

- Generated e+e- pair might hit PXD
- Confirms to be OK, according to KoralW simulation and KEKB machine study

"0.2%(<<2%) occupancy on PXD"

0

 $\sigma \sim 50 \text{ nb}$

Radiative Bhabha

Radiative Bhabha @Belle (photon → neutrons)

End-capPolyethylene shieldKLM(10cm) at KEKB

x40 at SuperKEKB!!

Polyethylene neutron shield at Belle

layer 9 before shield

layer 9 after shield

Additional neutron shield around radiative Bhabha photon dump

Polyethylene shield (10cm) at KEKB

Additional neutron shield around photon dump is necessary

TIPP2011 (June. 11th, 2011)

Schedule, collaboration

Main Ring construction schedule

Belle II Construction Schedule

					20)10							2	011								20)12								2	013	3								2	014	4				
		1 2	2 3	4	56	7	8 9	101	111	21	2 3	4	5 6	6 7	8 9	91	(11	12 :	1 2	3	4	56	7	8	9 :	1(1	112	1	2 3	4	5 (6 7	8	9 :	1(1	11	21	2	3	4 !	5 6	5 7	7 8	9	10	11	12
Belle roll-out																																															
Belle disassem	า																																														
Rotation																																															
E-KLM	R&D	R&D)																																												
	Production	Strip production, fiber glueing																																													
	Installation																				Ass	emb	ly, l	nsta	allat	ion	_										_										_
					_											_						_			_		_		_			_										_	_	_			_
B-KLM	R&D					R&I)							_		_	_													_		_					_		_				_				_
	Production				_				_		_					_																						21	01	14	1 (Se	r٢).			_
	Installation													_		_	_								_ /	Asse	embl	y, In	stall	atio	n						_			_			- 1-				_
																																_					-				_	_	_	_			_
ECL	Prototyping, evaluation	Proto	otyp	ing,	Eval	uatio	n of	read	out	electr	onics	3						_			-																				_	_	_	_			_
	Production		_		_				_					_	Con	inec	tor-L	3	_		Bar	rel e	ect	roni	cs									Enc	Icar) ele	ctro	onic	S							-	_
	Installation				_				_					_		_	_		_	_		_			_	_	_		_	_		_					-									_	
	A																								_	_			4°							_	-				_	_		-			_
A-RICH	Aerogei	R&D										D		£													Pr	oauc	tion							_					-	-	-	-			_
	HAPD	R&D Production											_		-				-	-	-	-			_																						
	ASIC	R&D																	_	Pr	oque	alon										-					-	\rightarrow					-	-			
	Installation								_		_			_		_			_			_			-		_			_						_	-	-						-			-
TOP	Quartz Bar	Test	pro	duct	ion (avalu	atio	n								P	rodu	ction																							-	-					-
101		Test production evaluation Production												-				-	-	-	-		-	-																							
		rest	pro	auci		evalu	allu			Culo																											-					-	-				-
	mstallation						_																		-	-			-	-		-					+					-	-	-		_	-
CDC	Chambor	Doci	an							Ea	bric	atio	on																								+							-		-	-
CDC		Desig	<u>yn</u>							I a		aut														Dro	due	tio	n								-						-	-		-	-
	Readout electronics	RœD																									uuu										-				-	-	-	-		-	-
CVD	Canaar	Evel						Dro	adu	ctio	n														-					-		-					-	-			-	-	-			_	
500	Sensor	Eval		on				FIC	Juu	cuo		ro d	uet	ion											-	-	_										-				-	-	-	-			_
	Hypria	Proto	otyp	ing a	ind E	valu	atio	n			P	υu	ucu					la la c														-				_	-			_	_	-	-	-		_	_
	Ladder		_		_				_					_	- /	ISS	em	DIY																			-				_	_	_	-			_
	Ladder mount				_				_							_						_			_	_	_		.add	er r	noun	It				_					_	_	-	-			_
PYD	Sanaar	Drote	atura	ing	toot				Dooi	an of	DVP	7 (5	inalu	vorei) V	77		202	cin		hin	ni									-					-				-	-	-	-			
		Prote	otyp	ing,	toet				Desi	giroi	FAL	<i>, (</i> 1		versi			51		нр		י קי ו רח			19						-		-					-	-			-	-	-	-			-
	Module	FIOR	Jyp	nıg,	lest												20	, D	· · · · ·	, D							_			-	Mod	lulo	pro	duct	ion							-	-	-		-	-
	Module mount	+	-		-			+ +	-	+ +						-	+ +		-	-			-		-	-			-	-	WICC	ane	prot	auci			m	odu	e m		+	-	-	-		+	-
	Module mount		-				_									-									-	-				-		-	-					Juu	GIII		-	-	-	-		-	-
Beam nine		R&D	014	alua	tions													I	ab	ric	atic	n -										+	\square			-	-	\square			+	+	-	-		+	
Dealli hihe		TαD	, ev	aiua	nons																arcit											-					+	\vdash			-	-	-	-		-	-
BP+PXD+SVD	Integration		-						-				-			-		-		-			-		-	-		_	-	+			-		-		+-	\vdash					-	-		-	-
	Installation		-		-											-			-	1		-							-			-					-									\neg	

Belle II Collaboration

15 countries/regions, ~60 institutes, ~400 collaborators

Belle II Japan

КЕК	47
Nagoya Univ.	15
Nara Women's Univ.	10
Niigata Univ.	5
Osaka City Univ.	4
Toho Univ.	3
Tohoku Univ.	14
Tokyo Metropolitan Univ.	4
U-Tokyo	4
Nuclear Physics Consortium (NPC)	15

Summary

- B-factory has achieved good test of KM theory.
- Indication of NP(?) is already seen.
 NP search is the main aim of Super B-factory.

- SuperKEKB accelerator: x40 luminosity
- Belle II detector: better performance and survives under x20 background environment
- We have just start construction and start experiment in 2014.
- 参加してみようかなと思った人は是非ご一緒に

Backup: physics at Belle-II

Missing Energy Modes: $B^- \rightarrow \tau^- \nu$

• Tension between the global CKM fit and $\mathcal{B}(B \rightarrow \tau \nu)$:

- Better measurement of $\mathcal{B}(B \rightarrow \tau \nu)$ may reveal source of the tension.
 - \rightarrow Tag-side information vital when $\geq 2 \nu's$ in final state! Signal is seen as zero excess E_{FCL}.

Example w/ semileptonic tag, 657M BB PRD82:071101 (2010)

 $\mathcal{B}(B^- \to \tau^- \bar{\nu}_{\tau}) = (1.54^{+0.38}_{-0.37}(stat)^{+0.29}_{-0.31}(syst)) \times 10^{-4}$

$B \rightarrow \tau \nu$ at Belle II

- Also sensitive to new physics:
 - In type-II Two-Higgs Doublet Model (THDM), the SM branching fraction of $B^- \rightarrow \tau^- \nu$ is modified:

$$\mathcal{B}(B^- \to \tau^- \bar{\nu}_\tau) = \mathcal{B}_{\rm SM}(B^- \to \tau^- \bar{\nu}_\tau) \left[1 - \frac{m_B^2}{m_H^2} \tan^2 \beta \right]$$

Belle II discovery region with 5 ab⁻¹

- Assumes improvements in theory values:
 - 5% |V_{ub}| error
 - 5% f_B error

5 σ discovery region current 95% exclusion

Direct CP Violation: B \rightarrow K π

• Puzzle of direct CP violation in K π :

- Difference in DCPV in charged/neutral B decays:

 $\Delta \mathcal{A} \equiv \mathcal{A}_{K^{\pm}\pi^{0}} - \mathcal{A}_{K^{\pm}\pi^{\mp}} = +0.164 \pm 0.037$

then we expect ΔA = 0

- Missing diagrams?
- Hadronic interactions?
- → These result in large theoretical uncertainty...

CPV in ${\rm B} \longrightarrow {\rm K} \; \pi$ at Belle II

- However, we can compare to a model independent sum rule: $A_{CP}(K^+\pi^-) + A_{CP}(K^0\pi^+) \frac{\mathcal{B}(K^0\pi^+)}{\mathcal{B}(K^+\pi^-)} \frac{\tau_0}{\tau_+}$ Gronau, PLB627, 82 (2005) $= A_{CP}(K^+\pi^0) \frac{2\mathcal{B}(K^+\pi^0)}{\mathcal{B}(K^+\pi^-)} \frac{\tau_0}{\tau_+} + A_{CP}(K^0\pi^0) \frac{2\mathcal{B}(K^0\pi^0)}{\mathcal{B}(K^+\pi^-)}$
 - This rule is free of the previous theoretical complications.
 - Can be represented as a diagonal band:
- Current situation: *Slope determined by branching fractions & lifetimes, fairly precisely known.

CPV in ${\rm B} \longrightarrow {\rm K} \; \pi$ at Belle II

- However, we can compare to a model independent sum rule: $A_{CP}(K^+\pi^-) + A_{CP}(K^0\pi^+) \frac{\mathcal{B}(K^0\pi^+)}{\mathcal{B}(K^+\pi^-)} \frac{\tau_0}{\tau_+}$ Gronau, PLB627, 82 (2005) $= A_{CP}(K^+\pi^0) \frac{2\mathcal{B}(K^+\pi^0)}{\mathcal{B}(K^+\pi^-)} \frac{\tau_0}{\tau_+} + A_{CP}(K^0\pi^0) \frac{2\mathcal{B}(K^0\pi^0)}{\mathcal{B}(K^+\pi^-)}$
 - This rule is free of the previous theoretical complications.
 - Can be represented as a diagonal band:
- $A^{K^0\pi^0}$ $\sigma^{(A^{K^+\pi^0})}$ Current situation: • Summile 0.10 0.05 Shaded region is overlap of measured neasured $\mathcal{A}(\mathbb{K}^0 \pi^\circ)$ and $\mathcal{A}(\mathbb{K}^0\pi^+)$. 0.05 0.10 0.15 0.20 0.25 0.30 AK⁰π⁺ -0.05 Benefits from: -0.05 ✓ Charged K/ π ID (TOP counter) -0.10 $\checkmark \pi^{\circ} \rightarrow \gamma \gamma$ detection (ECL) expected sum rule) ✓ K_s vertexing eff. (increased SVD radius) ✓ …and of course, statistics

 \rightarrow Belle II is especially well suited to measure the all neutral final state: K⁰ π°

Mixing Induced CP Violation in $b \rightarrow {\rm s} \ \gamma$

 In SM, photon polarizations in b → s γ depend on b flavor:

- Presence of significant mixing-induced CP violation would indicate the presence of right handed currents and clear hints of new physics.
 - This type of new physics does not require a new phase.

Time Dependent CPV in b ightarrow s γ

A recent example:

– Search for TCPV in ${\rm B} \to \phi ~{\rm K} ~\gamma$

Belle preliminary, arXiv: 1012.0481 B $\rightarrow \phi$ K γ with 772M BB

$$S(B \to \phi K \gamma) = +0.74^{+0.72}_{-1.05} (stat)^{+0.10}_{-0.24} (syst)$$
$$\mathcal{A}(B \to \phi K \gamma) = +0.35 \pm 0.58 (stat)^{+0.23}_{-0.10} (syst)$$

Measurements are statistics limited...

- Also the case for similar modes: ${\rm B} \to {\rm K_S} \, \pi^{\rm o} \, \gamma, \, {\rm B} \to {\rm K^*} \, \gamma$

Time Dependent CPV in b ightarrow s γ

– Statistics limited for $\mathcal{S}(b \rightarrow s \gamma)$ in other modes

Time Dependent CPV in b \rightarrow s γ

- Example improvements in the error of S as a function of integrated luminosity for:
 - Nonresonant K_s $\pi^{
 m o}$ γ
 - Resonant K $^{*0} \gamma$
 - All K_s $\pi^{o} \gamma$
- This sensitivity can help distinguish between models...

S

✓ Efficiency for $K_s \rightarrow \pi^+ \pi^-$ improves with SVD radius.

Physics sensitivity at Belle-II

Observable	Belle 2006	Belle II/Su	ıperKEKB	$LHCb^{\dagger}$					
	$(\sim 0.5 \text{ ab}^{-1})$	(5 ab^{-1})	(50 ab^{-1})	(2 fb^{-1})	(10 fb^{-1})				
Hadronic $b \rightarrow s$ transitions									
$\Delta S_{\phi K^0}$	0.22	0.073	0.029		0.14				
$\Delta S_{n'K^0}$	0.11	0.038	0.020						
$\Delta S_{K_{k}^{0}K_{k}^{0}K_{k}^{0}}^{i}$	0.33	0.105	0.037	-	-				
$\Delta \mathcal{A}_{\pi^0 K_{\pi^0}^0}$	0.15	0.072	0.042	-	-				
$\mathcal{A}_{\phi\phi K^+}$	0.17	0.05	0.014						
$\phi_1^{eff}(\phi K_S)$ Dalitz		3.3°	1.5°						
Radiative/electroweak $b \rightarrow s$ transitions									
$S_{K_{2}^{0}\pi^{0}\gamma}$	0.32	0.10	0.03	-	-				
$\mathcal{B}(\tilde{B} \to X_s \gamma)$	13%	7%	6%	-	-				
$A_{CP}(B \to X_s \gamma)$	0.058	0.01	0.005	-	-				
C_9 from $A_{FB}(B \to K^* \ell^+ \ell^-)$	-	11%	4%						
C_{10} from $A_{FB}(B \to K^* \ell^+ \ell^-)$	-	13%	4%						
C_7/C_9 from $A_{FB}(B \to K^* \ell^+ \ell^-)$	-		5%		7%				
R_K		0.07	0.02		0.043				
$\mathcal{B}(B^+ \to K^+ \nu \nu)$	$^{\dagger\dagger} < 3 \mathcal{B}_{SM}$		30%	-	-				
$\mathcal{B}(B^0 \to K^{*0} \nu \bar{\nu})$	$^{\dagger\dagger} < 40 \mathcal{B}_{SM}$		35%	-	-				
Radiative/electroweak $b \rightarrow d$ transitions									
$S_{\rho\gamma}$	-	0.3	0.15						
$\mathcal{B}(B \to X_d \gamma)$	-	24% (syst.)		-	-				
Leptonic/semileptonic B decays									
$\mathcal{B}(B^+ \to \tau^+ \nu)$	3.5σ	10%	3%	-	-				
$\mathcal{B}(B^+ \to \mu^+ \nu)$	$^{\dagger\dagger} < 2.4 B_{SM}$	$4.3 \text{ ab}^{-1} \text{ for}$	5σ discovery	- D - 11 -	-				
$\mathcal{B}(B^+ \to D\tau\nu)$	-	8%	3%	Relfe					
$\mathcal{B}(B^0 \to D\tau\nu)$	-	30%	10%	-	-				

Physics sensitivity at Belle-II

LFV in τ decays (U.L. at 90% C.L.)					
$\mathcal{B}(\tau \to \mu \gamma) \ [10^{-9}]$	45	10	5	-	-
$\mathcal{B}(\tau \to \mu \eta)$ [10 ⁻⁹]	65	5	2	-	-
$\mathcal{B}(\tau \to \mu \mu \mu) \ [10^{-9}]$	21	3	1	-	-
Unitarity triangle parameters					
$\sin 2\phi_1$	0.026	0.016	0.012	~ 0.02	~ 0.01
$\phi_2(\pi\pi)$	11°	10°	3°	-	-
$\phi_2(\rho\pi)$	$68^\circ < \phi_2 < 95^\circ$	3°	1.5°	10°	4.5°
$\phi_2 (\rho \rho)$	$62^{\circ} < \phi_2 < 107^{\circ}$	3°	1.5°	-	-
ϕ_2 (combined)		2°	$\lesssim 1^{\circ}$	10°	4.5°
$\phi_3 (D^{(*)}K^{(*)})$ (Dalitz mod. ind.)	20°	7°	2°	8°	
$\phi_3 (DK^{(*)}) (ADS+GLW)$	-	16°	5°	5-15°	
$\phi_3 (D^{(*)}\pi)$	-	18°	6°		
ϕ_3 (combined)		6°	1.5°	4.2°	2.4°
$ V_{ub} $ (inclusive)	6%	5%	3%	-	-
$ V_{ub} $ (exclusive)	15%	12% (LQCD)	5% (LQCD)	-	-
$\bar{ ho}$	20.0%		3.4%		
$\bar{\eta}$	15.7%		1.7%		

Backup: SuperKEKB

Y. Ohnishi / KEK

Y. Ohnishi / KEK