

# The latest lceCube results and the implications

#### K. Mase, Chiba Univ. for the IceCube collaboration



### Neutrinos to elucidate cosmic ray origin

#### VHE v proton

Neutrinos are rarely interacting particles

- Arrive straight to the Earth from the deep Universe
- Produced through hadronic interactions
  - $\rightarrow$  Cosmic ray origin



### Multi messengers

**Neutrino** production is closely related to production of **cosmic rays** and **gamma rays** 

$$p + p(\gamma) \rightarrow \pi^{\pm} / \pi^{0} + anything$$

$$\pi^{+} \rightarrow \mu^{+} v_{\mu}$$

$$\mu^{+} \rightarrow e^{+} v_{e} \overline{v}_{\mu} \quad E_{v_{\mu}} \approx E_{v_{e}} \approx E_{\overline{v}_{\mu}}$$

$$\pi^{0} \rightarrow 2\gamma$$

$$E_{v} \approx \frac{1}{20} E_{p} \qquad \because E_{\pi} \approx \frac{1}{5} E_{p}, E_{v} \approx \frac{1}{4} E_{\pi}$$

$$E_{v} \approx E_{\gamma}$$

$$CR \longleftrightarrow \gamma$$

©M. Ahlers

### Exploring the universe with neutrinos



### How do we detect neutrinos?



Large volume for neutrinos to interact
 Transparent medium for light to propagate to photo-sensors
 Antarctica ice

2013. 03.19, VHEPA2014

5

### Part of our detector: Antarctica ice

by CryoStat ©ESA





### The IceCube detector





niversity of Alberta

Clark Atlanta University Georgia Institute of Technology Lawrence Berkeley National Laboratory **Ohio State University** Pennsylvania State University Southern University and A&M College Stony Brook University University of Alabama University of Alaska Anchorage University of California-Berkeley University of California-Irvine University of Delaware University of Kansas University of Maryland University of Wisconsin-Madison University of Wisconsin-River Falls

#### International Funding Agencies

Fonds de la Recherche Scientifique (FRS-FNRS) Fonds Wetenschappelijk Onderzoek-Vlaanderen (FWO-Vlaanderen) Federal Ministry of Education & Research (BMBF) German Research Foundation (DFG) Deutsches Elektronen-Synchrotron (DESY) Knut and Alice Wallenberg Foundation Swedish Polar Research Secretariat The Swedish Research Council (VR)

University of

Canterbury

University

University of Oxford

Université de Mons

University of Gent

University of Adelaide

Vrije Universiteit Brussel

Université Libre de Bruxelles

University of Wisconsin Alumni Research Foundation (WARF) US National Science Foundation (NSF)

Stockholm University Uppsala Universitet

Humboldt Universität

Universität Dortmund

Universität Wuppertal

Ecole Polytechnique

Fédérale de Lausanne

University of Geneva

Universität Bonn

Universität Mainz

**Ruhr-Universität Bochum** 

**RWTH Aachen University** 

**Deutsches Elektronen-Synchrotron** 

Technische Universität München

#### 45 institutes and ~300 physicists

2013. 03.19, VHEPA2014

### The deployment



Use hot water to make a hole







K. Mase

### The construction

2004: project started 2006-2007: IC9 2007-2008: IC22 2008-2009: IC40 2009-2010: IC59 2010-2011: IC79 End of 2010: IceCube completed! 2011~: IC86





#### IC59 (2009-2010)



#### IC79 (2010-2011)



2013. 03.19, VHEPA2014

#### IC86 = complete IceCube (2011~)









### The angular resolution

- Systematic angular shift < 0.2°</p>
- Angular resolution < 1° (> 10 TeV)





down-going 👢

> Three main backgrounds: Atm  $\mu$ , Atm  $\nu$ , prompt  $\nu$  (all CR originated)

Essentially energy and zenith angle information used for signal searches

2013. 03.19, VHEPA2014

### Point source search

Search for muon neutrinos by using mainly the directions (energy info also used)

4-year data (IC40+IC59+IC79+IC86-I): 1371.7 days

Test null hypothesis of no signal against one with signals

Sensitive: > ~1 TeV



#### 178000 v + 216000 μ

### Upper limit for selected sources

Most significant 44 sources are selected a priori to reduce the number of trials The list was determined by a modeling producing neutrinos



### Stacking analysis

Increase the ability by stacking a specific source class



### Search for neutrinos from AGN flares

- ✓ Use timing information of AGN flares to reduce background
- ✓ Fermi data used for selecting sources and the light curve
- ✓ Selected hard spectrum BL-Lacs, and FSRQs
- ✓ No significant signal was found





### IceCube follow-up programs



#### EHE online alert is coming

### Search for neutrinos from GRBs

neutrino (v<sub>µ</sub>) searches by using the direction and the timing information of GRBs  $\rightarrow$  Very low backgrounds arXiv: 1309.6979

4 year data (IC40+IC59+IC79+IC86-I) ~540 GRBs No significant neutrino signal  $\rightarrow$  limits



Either GRBs are not the main source for UHECRs

Or, theoretical models may need modifications

2013. 03.19, VHEPA2014

### Diffuse neutrino search

Idea to integrate weak neutrino flux Search for diffuse muon neutrinos by using mainly energy information Signal slope is harder than background slope

#### Sensitive: 30 TeV-10 PeV



- Sensitivity is below Waxman-Bahcall bound
- Atmospheric neutrinos measured from 100 GeV 300 TeV
  - $\rightarrow$  Consistent with previous measurements

## The extremely high energy (EHE) cosmogenic neutrino search



### Two cascade like events found in 2011-2012 data

May, 2011 - May, 2012 (350.9 days), IC86 configuration PRL 111, 021103 (2013) Either CC interaction of v<sub>e</sub> or NC interaction of any flavor v

"Bert"

Aug., 9<sup>th</sup>, 2011 Run 118545 -Event 63733662 NPE: 7.0 x 10<sup>4</sup> NDOM: 354 1.04±0.16 PeV



|                                    | event rate<br>in 615.9 days |
|------------------------------------|-----------------------------|
| Atmospheric muons                  | $0.038 \pm 0.004$           |
| conventional atmospheric neutrinos | $0.012 \pm 0.001$           |
| prompt neutrinos*                  | $0.033 \pm 0.001$           |
| total background                   | 0.082 ± 0.004               |

\* R. Enberg et al., PRD78, 043005 (2008)

Significance: 2.8o

Highest energy neutrinos ever seen!

#### "Ernie"

Jan, 3<sup>rd</sup>, 2012 Run 119316 -Event 36556705 NPE: 9.6 x 10<sup>4</sup> NDOM: 312 1.14±0.17 PeV







### High energy starting event search

- Follow-up of the EHE neutrino search
- Search contained events (neutrinos) by using outer layers as veto
- Atmospheric muon backgrounds reduced
- Atmospheric neutrino backgrounds also reduced as atmospheric muons are normally accompanied
- 420 Mton fiducial mass
- All flavor
- > 50 TeV
- 3 times better than EHE neutrino search
   @ 1 PeV





### Sky map and the significance



### HESE GRB correlation

- Investigated correlation between HESE events and GRBs
- Model independent (10s to 15 days)
- ➢ 568 GRBs
- "Best" time window: 80340 s (~ 22.3 hours)
- "Best" pre-trial p-value: 17%
- Post-trial p-value: 77%
- Not significant



### High energy extension

#### Increase the sensitivity at high energy (> 10 TeV)

IceCube (120 m): 1 km<sup>2</sup> +HEX (120 m): 2.3 km<sup>2</sup> +HEX (240 m): 6.3 km<sup>2</sup> +HEX (360 m): 12.6 km<sup>2</sup>

The optimization is on-going

Additional idea to extend surface tanks for veto



#### ~100 new strings

### Cosmic ray measurements by IceTop



- 1 year cosmic ray energy spectrum measured by IceTop-73 configuration from 1.6 PeV to 1.3 FeV
- >Precise measurement: uncertainty 12% above 10 PeV
- Consistent with other experiments
- 4 characteristic energy slopes found
- May indicate composition change
- Mass number increases with energy up to 100 PeV



### Dark matter search in the Milky Way



Dark matter density profile (model dependent. NFW model as benchmark.)

SUSY model (model dependent)



### Atmospheric neutrino oscillation

 $P(\nu_{\mu} \rightarrow \nu_{\mu}) = 1 - \sin^2(2\theta_{23})\sin^2(1.27\Delta m_{32}^2 L/E)$ 

PRL, 111, 081801 (2013)



#### **Precision IceCube Next Generation Upgrade** (PINGU)

- ✓ High detector density (40 strings with 20 m spacing)
- Energy threshold: a few GeV  $\checkmark$
- Measures neutrino mass hierarchy  $\checkmark$
- ✓ Normal mass hierarchy with 3 sigma after 3.5 years
- **Resolutions:**  $\checkmark$  $\Delta E \simeq 20\%$ ,  $\Delta \theta \simeq 10^{\circ}$  (depends on energy and flavor)





### **Summary**

#### IceCube completed end of 2010 and performing as expected

> Two PeV neutrinos were observed (significance  $2.8\sigma$ )

> 26 events observed by a follow-up search for high energy starting events (significance  $4.1\sigma$ )

> We have started to see something other than backgrounds!

#### > We do not know yet what they are

➢ GRBs are probably not the main source of UHECRs, or the theoretical models need modifications

FR-II types are not the UHECR source in case of proton composition

- Particle physics can be performed
- > More data are coming (See A. Ishihara's talk tomorrow)

### backups



## Likelihood method translates events on the sky into p-values

21

Signal: Astrophysical neutrinos clustering in space Background: Isotropic atmospheric neutrinos

Maximize the likelihood function:



### The detection principle



♦ EHE neutrino signal (all flavor)

 $\diamond$  Horizontal (opaque to the earth)

#### Atmospheric muon background

 $\diamond$  Low energy (the energy spectrum is steep (~E<sup>-3.7</sup>))

Yoshida et al PRD 69 103004 (2004)



### Bert visits Tokyo



### NPE distribution at final level

#### IC79/86 combined (615.9 days)

PRL 111, 021103 (2013)



### The energy deposit reconstruction



Aug. ("Bert") 1.0±0.2 PeV





Jan. ("Ernie") 1.1±0.2 PeV

energy resolution for these specific events including systematics (ice + DOM eff.)

#### Preliminary

### IceTop (surface array) veto information



-> No CR shower

15

### IceCube Deep Core

- Extend IceCube sensitivity to neutrinos with energies down to ~10 GeV
  - □ Six strings with 60 high-QE PMTs each (HAMAMATSU super bialkali)
  - Use very clear ice at bottom of IceCube

5

200

Quantum Efficiency : ZD0063

w<sup>e</sup>linin lini

400

500

300

Hamamatsu QE : ZD0063

QE (room temp) : ZD006





### Atmospheric muon background

- Dominant down-going background
- Estimated by using data
- Second veto layer introduced
- veto power: at least 3 orders of magnitude
- Removes also 70% of down-going atmospheric neutrino background (southern sky)
- ➤ 3 muon events passed the inner layer → 6.0 ± 3.4 events / 2 years with geometrical volume correction



### Atmospheric neutrino background

- Low rate at PeV energy (0.1 event/year)
- Reduced by 70% by the muon veto
- Uncertainty ~30% from CR composition and hadronic interaction
- Large uncertainty from unmeasured charm contribution Enberg et al. (2008) employed (NLO perturbative QCD)
  - -> 3.4 events
- Estimated bg rate: 4.6<sup>+3.7</sup>-1.2 events / 2 years



### Effective volume



#### This analysis is more sensitive to cascade events

### Charge distribution

- 28 events observed above selection criteria
- Total bg: 10.6<sup>+4.5</sup>-3.9
- Significance: 3.3σ (HESE analysis alone wo two PeV events)
- Including EHE result (2.8 σ): 4.1σ
- A posteriori (including two PeV events): 4.8σ
- Atmospheric muons are largely reduced
- Data and MC agree well at low charge



### Coordinate of the first detected light

> Uniformly distributed



### Declination vs deposited energy

- $\succ$ 21 showers vs 7 tracks Suggesting signals.
- $\succ$ In case of conventional atmospheric: track : cascade = 2:1
- $\succ$ Most of events come from southern sky because events from north are absorbed by the Earth
- **Declination** (degrees)  $\succ$ Excess in south is not due to atm. v since they are reduced in south by our muon veto
- low energy 4 tracks look atmospheric origin (consistent with the prediction of  $6\pm3.4$ )
- Neutrino energy for track events can be very high compared to the deposited energy



Deposited EM-Equivalent Energy in Detector (TeV)

### Longitudinal shower development in ice



#### Light yield vs. distance for a point-like source

