


Outline

@ Indirect searches for dark matter neutralinos
= Astrophysical uncertainties
= Prospects for detection

= Possible physical effects on astrophysical systems
@ Implications for the cooling flow problem of galaxy clusters
= Comparison to direct/accelerator searches

@ Searches for DM MACHQOs
= Constraint from binary destruction

= M87 in the Vigro cluster: MACHO candidates
= Cluster-cluster microlensing search for MACHOS

@ Dark energy study by distant SUpPernevae
= A note on the systematic effect from, dust extinction



Indirect detection of J/Jf /



SUSY Dark Matter (WIMPs, Neutralinos)

@ The most popular theoretical candidate for the dark
matter

= SUSY: theoretically well motivated.
= Lightest SUSY partners (LSPs) are stable by R-parity

= Neutralinos (l.c. of SUSY partners of photon, Z, and neutral
Higgs): the most likely LSP

= Predicted relic abundance is close to the critical density: ofi the

universe
(ov) =3x10"/(Q,h*) cm®s™

@ Constraint on the neutralino mass
= 20 GeV ~< m, <~ 10 TeV
= Lower bound from accelerator expernments
= Upper bound from cosmic everabundance y



Search for Neutralino Annihilation Signals

@ Line gamma-rays:
= X X2 VY
= X X 22y
s O ~102°cm3sti<<o ~ 102 cm3s?

=4

line

-

@ Continuum gamma-rays, e* , p, p-ba

Q Search'



Annihilation yields by hadron jets

@ Annihilation energy goes to gammas, e* ,p, p-bars, neutrinos as:
~1/4, 1/6, 1/15, 1/2

@ Particle energy peaks at: 0.05, 0.05, 0.1, 0.05 m, c=.
= (From DarkSUSY package, Gondolo et al. 2001)
= Most energy is carried by ~GeV particles for m, <10
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Gamma-ray search

@ Search regions:

= 1he Galactic Center

= Nearby dwarf galaxies, MW substructure (Sgr, Draco,...)

= M31
= M87

@ Uncertainties:

= Density profile of DM in the center

@ Core? Cusp?

@ NFW? Moore? ...

1
X (1+x )?
1
X1.5 (1+ X1.5)
1

NFW : p oc

Moore: p o

Burkert: p oc

i

Peirani et al. 2004

(1+ X)(1+ x%)
(X=r/r,)

Tahle 1. Reduced intensity in the direction of the galactic
centre
Profile f ;Jfrfx (GeVZiem ™) Reference
Moore 3% 1026
NEFW 8 1028
core 0 x 1022
Cusp A% 1022
NFW 2% 10%°
SWTS 8 % 102
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Annihilation from a simulated halo
Stoehr et al. 2004
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The core/cusp problem of LSB galaxies
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Halo substructure (1)

@ 5-10% of halo mass in tor e\ T
substructure/subhalos 1E o an E
@ Power-law mass function for 107 g E
subhaloes 1= E E
o Substructure could enhance ¢ E 3
the annihilation signal < 1o E
= Calcaneo-Roldan & Moore '00; w 107 _='
Tasitsiomi & Olinto '02; Taylor & 1070 E
Silk '03) 107 .
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Halo substructure (2)

@ Subhalos are less cuspy and less dense, and enhancement is at
most a factor of a few (Stoehr et al. '04)
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Figure 4. Left-hand panel: Circular velocity curves for the GA3n subhaloes anked 15, 10, ... 40 in mass (solid) together with corresponding 5%
dotted). For comparison, an NFW profile (dashed) and an SWTS profile with @ = 0.17 ithe value for the main halo)y are overplotted on the most 1
subhalo. The vertical solid line shows the softening length: the diagonal ling shows the profile slope corresponding to a constant density. Right-hand
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Detectablility: GLAST vs. ACTs

@ Neutralino mass
= Massive > ACT
= Small > GLAST
@ Line/Continuum

= Line > ACT
= Continuum = GLAST
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Detectabllity: 1. line (i)

Cross section for y mode ratio of Zy to 2y
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Detectability 1. line (i
ACT prospects
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Fig. 9. Gamma-ray flux from a 10~* sr cone encompassing the galactic center for the 2v (on the left) and the Zy annihilation line {on
the right). The NFW halo profile giving the maximal flux has been assumed. The solid lines show the 5o sensitivity curves of the ACT
detectors described in the text.




Detectability 1. line (i
GLAST prospects
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Detectability 2. continuum (i)
G.C. and subhalos

ACT

Galactic Center

NFW(solid), SWTS(short-
dashed)

GLAST

30 deg away from G.C.

Background =
extragalactic GBR

Brightest subhalo (long-
dashed)
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Detectability 2. continuum (ir)
M31, M87, Sgr, Draco

M31: yes, if m, <20GeV
Sgr: yes, if m, <50GeV
M87, Draco: no, unless
adiabatic growth of SMBH

MW halo at b=90 deg:

= Explain EGRET residual
if m, <50GeV

Also depends on density
profile
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Baryonic infall and adiabatic compression of dark

maltter

@ Prada et al. astro-ph/0401512

@ Baryonic infall vs. angular momentum transfer?
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Adiabatic growth by SMBH

@ Density “spike” can be formed by the growth of

supermassive black hole (SMBH) mass at the center.
= Young (1980); for stellar density cusps in elliptical galaxies
= Gondolo & Silk (1999); for DM cusps
= “Adiabatic” = growth time scale > orbital perlod at r
= Annihilation rate divergent with r — 0 since y 5




Does adiabatic growth happen?

@ The Galactic Center

= If happens, constraints on SUSY and/or density profile (Gondolo & Silk
1999)

= It seems unlikely (Ullio et al. 2001; Merritt et al.2002)

@ The GC is baryon dominated.
= IS SMBH at the DM center?
= Disturbed by baryonic processes, e.g., starbursts and supernovae

@ Merger of SMBHSs destroys the spike and cusps

@ The cooling-flow clusters:
= A giant cD galaxiy always at the dynamical center
= DM dominates baryons to the center (LLewis et al. 2003)
= Adiabatic growth happens as a feed back to the coolingflow

> g

cooling flow ~10°°M _, /yr .
= youn >~10°yr >, B

9-10
M, ~10"" M,
r ~1EMY2 bne + ~ABw10’ M Y4 yr



Solving the cooling flow problem of
galaxy clusters
by dark matter neutralino annihilati



Introduction: the Cooling Flow Problem of
Galaxy Clusters

@ “Cooling flow clusters”
= Central gas cooling time < the Hubble Time (~10*°
= Theory predicts cooling flow: ~100-1000 M,
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Introduction: the Cooling Flow Problem of

Galaxy Clusters
@ No evidence for strong cooling flows from latest X-ray

observations

= A heating source required.

= Required heating rate: ~10* erg/s during 10*°yr for a rich c{usterA
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Introduction: the Cooling Flow Problem of
Galaxy Clusters

@ Heat conduction
= Effective if kK ~0.3 Spitzer value
= Useful for stabilizing intracluster gas

= A fine tuning necessary, and not all clusters can be explained
(e.g. Bregman & David 98; Zakamska & Narayan '03)

@ AGNSs
= Efficiency must be high (>~10% of BH rest mass to heat)
= Stability?
@ AGNSs generally episadic, intermittent
@ t-~10" yr, L. >> 10* erg/s
= Actual heat process unclear (jet? buoyant bublkles?)



Does adiabatic growth happen?

@ The Galactic Center

= If happens, constraints on SUSY and/or density profile (Gondolo & Silk
1999)

= It seems unlikely (Ullio et al. 2001; Merritt et al.2002)

@ The GC is baryon dominated.
= IS SMBH at the DM center?
= Disturbed by baryonic processes, e.g., starbursts and supernovae

@ Merger of SMBHSs destroys the spike and cusps

@ The cooling-flow clusters:
= A giant cD galaxiy always at the dynamical center
= DM dominates baryons to the center (LLewis et al. 2003)
= Adiabatic growth happens as a feed back to the coolingflow
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he cluster density profiles from

- Abell 2029
X-ray observations | . i etal 2003
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Annihilation energy from the density spike
at the cluster center

@ Density maximum determined by annihilation itself:

plov)m =ty =10t yr
r, =0.17M 2 m¥ " (o) 2
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Electron/positron energy loss

@ Electron/positrons lose their energy mainly by heating rather
radiation Coulombinteraction: t, =5x10°njg, yr

two stream instability (Scott et al.1980; Rosner & Tucker 1983)
t, =8x10°P/n'Yey yr

CMB InverseCompton: t_=1.2x10%g,"yr

Synchrotron : t, =1,.(B/3.3uG)~
where,
&, =&, 11GeV
p N, = Nyggs /(0.20m)
» Py = Pogs /(107ergem™) (equal to relativistice”™ pressure)

@ Proton/antiprotons lose their energy by Coulomb and ppiRelastic

scattering -



The Neutralino Mass Prediction

@ m, <~ 100 GeV favored.
= Annihilation rate ~ m, -2/7

= Heating loss should be more efficient than rad
loss

o

1Aty
-



Observability of annihilation signal:
gamma-rays

@ Continuum gamma-rays at ~1-10 GeV (for m, <100GeV)
= ~30 gamma-rays per annihilation
= Very close to the EGRET upper limit for a cluster @ 100Mpec

F ~7x 10°L,.m;*(d/100Mpc)* cm?s™

= Many positional coincidence between clusters and un-ID EGRET
sources (e.g. Reimer et al. 2003)

« GLAST will likely detect

@ Line gamma-rays ‘
= A few photons for a cluster with <@ v>;... = 1072° cmes e GLASH
In ~5 yr operation.
= Negligible background rate (=10 within the energy: and angular
resolution

= Air Cerenkov telescopes should have low energy. taresheld; since
the prediction m, <100 GeV Is correct

= 4



Annihilation gamma-ray detectability:
summary

@ ACTs:

= May detect line gamma-rays from the G.C.

=« Continuum may be detected, especially if baryonic infall' has
significant effect

@ GLAST:

= may detect continuum from the Galactic halo, if , <=30

@ Continuum detection from G.C. or halo: hew! o proyve?

@ Clusters of galaxies
= Promising target, if cooling flow isisuppressed by annihilation::

= Continuum: can be separated from CRs or AGNS; 13y
Q@ Steady or variable -
@ Point or extended



Galactic center vs. Galaxy Clusters

@ M/DZ?;

= Center/cluster ~ 104

@ Enhancement by SMBH adiabatic growth:
= ~10%° for clusters

@ Galactic center: extended -
@ Clusters: practically point source

-

o
@ Many clusters: Superpo ition woulrrmc

o
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Direct DM search and accelerator SUSY
search ‘
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MACHQOSs



Constraint on MACHO DM

Limits on Omeqga from various lensing studies
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~M,,, MACHO searches

@ Controversy in MACHO seaches to LMC:
= MACHO collab. Has claimed ~20% MACHO contributio

halo

@ Theoretical challenge!
= Self lensing Is alternative explanation

Model S
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T

- A (no lmec halg)

B (no lme halg) -
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MACHO candidate in M87/Virgo cluster?

- HST search by Baltz et al. '04 -

i OWFC2-?
. Several candidates, most of them could be
nova

- Consistent with ~20% mass fraction of
MACHOSs in DM

— T — 7T
PR candidate WFE2—5
[ V-l = 0.25+0.17

— T
[ condidate WFC2-5
L V=1 = 0.35+0.12

flux / maximum (M, = -B.082)




Cluster-Cluster Microlensin

Server

Background cluster
A2152-B I
(z=0.13, 560Mpc)

by ultra-magnified mi
of a star in A2152
A new proTae ¢
mass window (1C
/;

> 4 T~ L ;
Q Os IIERIPED

10> M,,,) (Totani

'St observation made in 2003 -

e |, > , v \rn ~ S
May/June by Subaru/Suprime-Cam,
'

analysis now. underway.
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Cluster-Cluster Microlensing (2)
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Dark Energy Study by
Distant Supernove



Latest Hubble diagram of high-z supernovae

@ Riess et al. astro-ph/0402512
@ 8 z>1 SNe from GOODS survey
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@ The cosmological constant (wy=1, dw/dz=

Constraint on Dark Energy

with the data
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Systematic effect from extinction by dust

Systematic evolution of extinction
by host galaxy evolution

Reddening is not large enough to
be reliably removed

Trend of evolution is similar to
the effect of A

= Interstellar gas increase, metal
decrease, to high-z

How significant for the dark -
energy study?
= 1T, Iin prepatation
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mag residual
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{0.65,0.2.0.8)
{0.56,0.2,0)
{0.5.1.0,0)
without dust
with dusl

redshift




