ICRR Workshop 9th March 2004

A.

Future Detection of Supernova Neutrinos and Its Implications for Astroparticle Physics

> Shin'ichiro Ando Dept. Phys., Univ. Tokyo

S. Ando & K. Sato, JCAP10(2003)001 S. Ando, ApJ in press (astro-ph/0401531)

INTRODUCTION Birth of Neutrino Astronomy

Neutrino burst from SN 1987A

Neutrino Oscillation

- Atmospheric neutrinos (2-3 mixing) – Deficit of v_{μ} ($v_{\mu} \rightarrow v_{\tau}$ oscillation) – $\Delta m_{13}^2 \sim 10^{-3} \text{ eV}^2$, $\theta_{23} \sim 45^\circ$ (maximal
 - mixing) $(10 \ CV, 0_{23} \approx 43 \ (110 \ Mina)$
- Solar/reactor neutrinos (1-2 mixing)
 - Deficit of ν_e (ν_e → ν_{µ,τ} oscillation)
 Δm₁₂² ~ 10⁻⁴ eV², θ₁₂ ~ 30^o (bi-maximal mixing)

What comes next?

Particle Physics

- Mass hierarchy, θ_{13} , CP-phase
- Absolute mass scale
- Magnetic moment?, Decay??

• Astrophysics and Cosmology

- Sun and the Earth via solar/geo-neutrinos
- Galactic supernova neutrino burst
- Relic supernova neutrinos

Mass Hierarchy & Theta_13

What comes next?

• Particle Physics

- Mass hierarchy, θ_{13} , CP-phase
- Absolute mass scale
- Magnetic moment?, Decay??
- Astrophysics and Cosmology
 - Sun and the Earth via solar/geo-neutrinos

Part I

- Galactic supernova neutrino burst
- Relic supernova neutrinos

What comes next?

- Particle Physics
 - Mass hierarchy, θ_{13} , CP-phase
 - Absolute mass scale
 - Magnetic moment?, Decay??
- Astrophysics and Cosmology
 - Sun and the Earth via solar/geo-neutrinos
 - Galactic supernova neutrino burst
 - Relic supernova neutrinos

Part I Part II

Briefoverview

Supernova Relic Neutrinos

- Diffuse background of past supernova neutrinos
- Flux and rate estimate
- Future detector performance
- Implications for cosmic star formation history

Supernova Neutrino Burst and Flavor Conversion

- Flavor conversion inside supernova envelope
- Neutrino magnetic moment with normal/inverted mass hierarchy
- Expected signal at Super-K detector and its implications

Part I

Supernova relic neutrinos and cosmic star formation history

- 1. Introduction
- 2. Formulation & Models
- 3. Results of Numerical Calculation
- 4. Future Detector Performance
- 5. Conclusions

Ando, Sato, & Totani, Astropart. Phys. **18** (2003) 307 Ando & Sato, Phys. Lett. B **559** (2003) 113 Ando, ApJ in press (astro-ph/0401531)

Part I

Supernova relic neutrinos and cosmic star formation history

- **1. Introduction**
- 2. Formulation & Models
- 3. Results of Numerical Calculation
- 4. Future Detector Performance
- 5. Conclusions

Supernova relic neutrinos

Supernova Explosion

99% of its gravitational binding energy is released as neutrinos (supernova neutrino burst)

It is considered to trace the cosmic star formation rate (SFR).

There should be a diffuse background of neutrinos which were emitted from past supernova explosions.

<u>"Supernova Relic Neutrinos (SRN)"</u>

Motivations

- Is it really detectable?
 - Precise rate and background estimates are essential.
 - Kaplinghat, Steigman & Walker (2000); Ando, Sato & Totani (2003)
- Galaxy evolution and cosmic star formation rate
 - Totani, Sato & Yoshii (1996); Malaney (1997); Hartmann & Woosley (1997); Fukugita & Kawasaki (2003); Strigari et al. (2003); Ando (2004)
- Physics of supernova neutrinos
- Neutrino properties as an elementary particle
 - Neutrino oscillation
 - Ando & Sato (2003)
 - Neutrino decay (coupling with e.g. Majoron)
 - Ando (2003); Fogli et al. (2004)

Motivations

- Is it really detectable?
 - Precise rate and background estimates are essential.
 - Kaplinghat, Steigman & Walker (2000); Ando, Sato & Totani (2003)
- Galaxy evolution and cosmic star formation rate
 - Totani, Sato & Yoshii (1996); Malaney (1997); Hartmann & Woosley (1997); Fukugita & Kawasaki (2003); Strigari et al. (2003); Ando (2004)
- Physics of supernova neutrinos
- Neutrino properties as an elementary particle
 - Neutrino oscillation
 - Ando & Sato (2003)
 - Neutrino decay (coupling with e.g. Majoron)
 - Ando (2003); Fogli et al. (2004)

Cosmic star formation rate

Cosmic star formation rate

- Cosmic SFR is inferred from UV, Hα, submm/FIR luminosity density.
- Although there seems to be a general trend at low-z, these estimates are quite uncertain!
- We deserve other independent methods.

SRN as an SFR indicator

UV luminosity density

- Advantages
 - Easier observation
 - Spectral features such as line/edge → enables redshift measurement
- Disadvantages
 Dust extinction

SN relic neutrinos

- Advantages
 - Completely free from dust
 - Directly connected
 with the death of
 massive stars →
 good SFR tracer
- Disadvantages
 - <mark>, ⇒ Difficult‼</mark>
 - No spectral feature

But, the detection is within reach in the near future!!

Part I

Supernova relic neutrinos and cosmic star formation history

- 1. Introduction
- 2. Formulation & Models
- 3. Results of Numerical Calculation
- 4. Future Detector Performance
- 5. Conclusions

How to calculate the SRN flux

We need information concerning...

- 1. Neutrino spectrum emitted from each supernova explosion.
- 2. Neutrino oscillation within supernovae and the Earth.
- 3. Supernova rate.

Original neutrino spectrum

LL model of $20M_3$

- Neutrino spectra calculated numerically by three independent groups are adopted.
- Average energies (MeV)

Model	$\overline{\nu}_{e}$	ν_{x}	Ratio
LL	15.4	21.6	1.4
TBP	11.4	14.1	1.2
KRJ	15.4	15.7	1.0

LL: Totani, Sato, Dalhed & Wilson (1998) TBP: Thompson, Burrows & Pinto (2003) KRJ: Keil, Janka & Raffelt (2003)

Spectrum after oscillation

- Here, we only consider the case of normal mass hierarchy without magnetic moment.
- In the case of large mixing, flavor conversion occurs efficiently (~30% mixing).
- The difference in average energies is essential.

Supernova rate history

- Supernova rate is inferred from SFR via $\int_{8M_{\odot}}^{125M_{\odot}} dm \phi(m)$
 - $R_{\rm SN}(z) = \psi_*(z) \frac{\int_{8M_{\odot}}^{125M_{\odot}} dm \,\phi(m)}{\int_0^{125M_{\odot}} dm \,m\phi(m)}$
- Behavior at high redshift contains substantial uncertainties.
- But, as shown later, high redshift behavior is found irrelevant.

The uncertainty around here is not important so much.

Part I

Supernova relic neutrinos and cosmic star formation history

- 1. Introduction
- 2. Formulation & Models
- **3. Results of Numerical Calculation**
- 4. Future Detector Performance
- 5. Conclusions

Flux & event rate

 Integrated flux (cm⁻² s⁻¹)

Model	E _v > 11.3 MeV	E _v > 19.3 MeV	
LL	2.3	0.46	
TBP	1.3	0.14	
KRJ	2.0	0.28	

Flux & event rate

 Integrated flux (cm⁻² s⁻¹)

Model	E _v > 11.3 MeV	E _v > 19.3 MeV
LL	2.3	0.46
TBP	1.3	0.14
KRJ	2.0	0.28

• Event rate at SK (yr⁻¹)

Model	E _e > 10 MeV	E _e > 18 MeV
LL	2.3	1.0
TBP	0.97	0.25
KRJ	1.7	0.53

 At high energy region, high-z contribution is much less significant compared with local (z < 1) one.

Recent observational result from SK

Part I

Supernova relic neutrinos and cosmic star formation history

- 1. Introduction
- 2. Formulation & Models
- 3. Results of Numerical Calculation
- 4. Future Detector Performance
- 5. Conclusions

GADZOOKS!

GADZOOKS! Antineutrino Spectroscopy with Large Water Čerenkov Detectors

John F. Beacom¹ and Mark R. Vagins²

¹NASA/Fermilab Astrophysics Center, Fermi National Accelerator Laboratory, Batavia, Illinois 60510-0500 ²Department of Physics and Astronomy, 4129 Reines Hall, University of California, Irvine, CA 92697 (Dated: 25 September 2003)

We propose modifying large water Čerenkov detectors by the addition of 0.2% gadolinium trichloride, which is highly soluble, newly inexpensive, and transparent in solution. Since Gd has an enormous cross section for radiative neutron capture, with $\sum E_{\gamma} = 8$ MeV, this would make neutrons visible for the first time in such detectors, allowing antineutrino tagging by the coincidence detection reaction $\bar{\nu}_e + p \rightarrow e^+ + n$ (similarly for $\bar{\nu}_{\mu}$). Taking Super-Kamiokande as a working example, dramatic consequences for reactor neutrino measurements, first observation of the diffuse supernova neutrino background, Galactic supernova detection, and other topics are discussed.

PACS numbers: 95.55.Vj, 95.85.Ry, 14.60.Pq

FERMILAB-Pub-03/249-A

 A proposal for water Cerenkov detectors (SK; Hyper-K; UNO, etc.) by Beacom & Vagins (hep-ph/0309300).

GADZOOKS!

A Quick Recap

Gadolinium Antineutrino Detector Zealously Outperforming Old Kamiokande, Super!, or GADZOOKS!, is a Super–K upgrade being proposed by John Beacom and myself.

The basic idea is to use water-soluble gadolinium (tri)chloride, $GdCl_3$, to enable the detection of neutrons from the reaction

$\overline{\nu}_e$ + p \rightarrow e⁺ + n

Among other things, this new capability will *greatly* enhance Super–K–III's response to supernova neutrinos (both relic and galactic), reactor \overline{v}_e 's, and \overline{v}_e 's from the Sun.

In order to collect >90% of these neutrons on gadolinium we'll only need to put *100 tons* of GdCl₃ in Super-K!

- It enables to distinguish $\overline{\nu}_e$ from other flavors or μ -induced events.
- It opens up energy window at 10—30 MeV for the SRN detection.

Energy window

Upcoming detectors

Monte Carlosimulation Procedure

- 1. Simulate the SRN signal at 10—30 MeV
- 2. Analyze the simulated data with simple parameterization
- 3. Repeat the procedures 1. & 2., 1000 times
- Obtain distribution of best fit values for adopted parameters

Simulated SRN data

- Data are generated by MC simulation using the LL model.
- We analyze the data with two free parameters related to SN rate as, $R_{\rm SN}(z) = R_{\rm SN}^0 (1+z)^{\alpha}$
- We assume that the supernova neutrino spectrum is quite well known.
 - Galactic SN will give us rich information.

Distribution of best fit parameters

Comparison of model/obtained SN rate

 SRN observation well reproduces assumed SN rate history.

Model SN rate 22.5 kton 5 yr 440 kton 5 yr

Distribution of best fit parameters (2)

- Distribution of (α, R_{SN}^{0}) without parameter fixing.
- Even with Hyper-K or UNO, it is difficult to obtain the both values without prior knowledge.

Part I

Supernova relic neutrinos and cosmic star formation history

- 1. Introduction
- 2. Formulation & Models
- 3. Results of Numerical Calculation
- 4. Future Detector Performance
- 5. Conclusions

Conclusion of Part I

- SRN flux and event rate is investigated as an SFR indicator.
- In the calculation, three supernova neutrino spectrum, LL, TBP and KRJ, is adopted.
- In the near future, 10—30 MeV will be available as an energy window.
- SFR evolution at low-z could be inferred with accuracy of ~30% (8%) by using the detector of 22.5 kton 5 yr (440 kton 5 yr).

Briefoverview

Supernova Relic Neutrinos

- Diffuse backgr past supern neutring
- Flux estimate
 - etector mance
- Implications for cosmic star formation history

Supernova Neutrino Burst and Flavor Conversion

- Flavor conversion inside supernova envelope
- Neutrino magnetic moment with normal/inverted mass hierarchy
- Expected signal at Super-K detector and its implications

Part II

Supernova neutrino oscillation with/without neutrino magnetic moment

- 1. Introduction
- 2. Formulation
- 3. Models for Numerical Calculation
- 4. Results & Discussion
- 5. Conclusions

Ando & Sato, Phys. Rev. D **67** (2003) 023004 Ando & Sato, Phys. Rev. D **68** (2003) 023003 Ando & Sato, JCAP **10** (2003) 001

Part II

Supernova neutrino oscillation with/without neutrino magnetic moment

- **1. Introduction**
- 2. Formulation
- 3. Models for Numerical Calculation
- 4. Results & Discussion
- 5. Conclusions

Neutrino magnetic moment

- We focus on the neutrino magnetic moment.
- If the neutrino has nonzero magnetic moment:
 - 1. Its <u>helicity flips</u> by the interaction with magnetic fields.
 - Conversion between neutrinos and antineutrinos.
 - 2. At the same time, its <u>flavor can also be transformed</u>. (spin-flavor precession)
 - 3. In matter, this can be <u>resonantly</u> caused, owing to potential difference among flavors. (Resonant spin-flavor (RSF) conversion)

Refs.

- Cisneros 1970; Fujikawa & Shrock 1980
- 2. Schechter & Valle 1981
- 3. Lim & Marciano 1988; Akhmedov 1988

Why do we consider supernovae?

- 1. Very efficient neutrino emission
 - 99% of the gravitational binding energy is released as neutrinos.
 - All the three-flavor (e, μ , τ) neutrinos and antineutrinos are radiated.
- 2. The RSF effect can be very efficient
 - High density → Resonance condition is satisfied.
 - Strong magnetic field → Adiabatic resonance may be realized.

Flavor conversion (MSW or RSF) inside the supernova

- An observed neutrino spectrum are different from original one owing to flavor conversions.
- Flavor conversions inside the supernova are enhanced by both the MSW matter effect and the magnetic RSF effect.

Part II

Supernova neutrino oscillation with/without neutrino magnetic moment

- 1. Introduction
- 2. Formulation
- 3. Models for Numerical Calculation
- 4. Results & Discussion
- 5. Conclusions

Two-component formulation

• For simplicity, we first discuss two-component.

 $\frac{\sqrt{2}G_F n_B (1-2Y)}{\mu_{e\mu} B}$

Matter effect (potential difference between $\overline{\nu}_{e}$ and ν_{μ}).

 $i \frac{d}{dr} \begin{pmatrix} \overline{V}_e \\ V_\mu \end{pmatrix}$

A parameter which determines whether the resonance is adiabatic or not.

 $\mu_{e\mu}B$

 $\frac{\Delta m_{12}^2}{2E}\cos 2\theta_{12}$

- Two diagonal components have the same value at resonance point.
 - At resonance, if nondiagonal element $\mu_{e\mu}B$ is sufficiently large, a complete conversion is realized (adiabatic resonance).

- Because $Y_{\rm e} \sim 0.5$ (1–2 $Y_{\rm e} \sim 0$) in the supernova envelope, RSF occurs in deeper region than MSW.
- Each conversion (MSW and RSF) occurs twice at different density regions (MSW-L,H; RSF-L,H), corresponding to two values of Δm^2 (Δm_{12}^2 , Δm_{13}^2).

Resonance and mass hierarchy

 In RSF-H and MSW-H, conversion channel is very sensitive to the neutrino mass hierarchy.

Resonance	Normal hierarchy	Inverted hierarchy
RSF-H	$\bar{\nu}_e \leftrightarrow \nu'_{\tau}$	$\nu_e \leftrightarrow \bar{\nu}'_{\tau}$
RSF-L	$\bar{ u}_e \leftrightarrow u'_\mu$	$\bar{ u}_e \leftrightarrow u'_\mu$
MSW-H	$\nu_e \leftrightarrow \nu'_{\tau}$	$\bar{\nu}_e \leftrightarrow \bar{\nu}'_{ au}$
MSW-L	$ u_e \leftrightarrow \nu'_\mu$	$ u_e \leftrightarrow \nu'_\mu $

Part II

Supernova neutrino oscillation with/without neutrino magnetic moment

- 1. Introduction
- 2. Formulation
- **3. Models for Numerical Calculation**
- 4. Results & Discussion
- 5. Conclusions

Models for supernova properties

- Original neutrino spectrum: Models by Thompson, Burrows & Pinto (2003)
- Density profile: 15M₃ progenitor model by Woosley & Weaver (1995)
- 3. Magnetic field structure: Dipole structure; strength is normalized at the surface of iron core (B_0) .

cf. Observation of the surface magnetic field of white dwarfs gives value 10^7 — 10^9 G. We take to 10^{10} G considering the possible decay.

Original neutrino signal

15M₃ model by Thompson et al. (2003)

- Their calculation ends around 0.25 s after core bounce.
 - The shock effect can be neglected.
- There exists a sharp peak of v_e . (neutronization burst)

Original neutrino signal

- Their calculation ends around 0.25 s after core bounce.
 - The shock effect can be neglected.
- There exists a sharp peak of v_e . (neutronization burst)
- Hierarchy of the average energy:
 - $\langle E^0_{\nu_e} \rangle < \langle E^0_{\bar{\nu}_e} \rangle < \langle E^0_{\nu_x} \rangle$
- Flavor conversion changes this relation.

Supernova progenitor model

- 15M₃ progenitor model by Woosley & Weaver (1995).
- RSF-H occurs at O+Si; RSF-L and MSW-H at O+C; and MSW-L at He layers.
- RSF-H becomes adiabatic when the magnetic field is sufficiently strong, on the other hand, RSF-L is always nonadiabatic.

Neutrinoparameters

Model	$B_0\left[\mathrm{G}\right]$	Mass hierarchy	$\sin^2 2 heta_{13}$	Group
MSW-NOR-S	0	Normal	10^{-6}	А
MSW-NOR-L	0	Normal	0.04	А
MSW-INV-S	0	Inverted	10^{-6}	А
MSW-INV-L	0	Inverted	0.04	В
RSF-NOR-S	10^{10}	Normal	10^{-6}	В
RSF-NOR-L	10^{10}	Normal	0.04	В
RSF-INV-S	10^{10}	Inverted	10^{-6}	А
RSF-INV-L	10^{10}	Inverted	0.04	С

- In this study, $\mu_v = 10^{-12} \mu_B$ is assumed.
- Each model is further categorized into three groups A, B and C, according to the detected $\overline{\nu}_e$ signal.

Part II

Supernova neutrino oscillation with/without neutrino magnetic moment

- 1. Introduction
- 2. Formulation
- 3. Models for Numerical Calculation
- 4. Results & Discussion
- 5. Conclusions

Conversion probability (large θ_{13})

Radius $[R_{o}]$

Time profile at SK

- Because v_e p → e⁺ n is dominant process, the observed signal is almost that of v_e.
- $\begin{array}{ll} \bullet & \mbox{Group C indicates} \\ & \mbox{strong peak of} \\ & \mbox{neutronization burst,} \\ & \mbox{because the original} \\ & \nu_e \mbox{ are converted.} \end{array}$
- Other two groups are almost degenerate.

Number spectrum at SK

D = 10 kpc

 Group C indicates the softest spectrum as well as a characteristic time profile.

R^{E} vs R^{T} plot at SK

- Error bars include only statistical errors, and are at 1σ level.
- Each group is well separated from one another on this plane.
- We cannot solve the degeneracy within each group.
- The signal of v_e may be a good probe for that.

Neutrinoparameters

Model	$B_0\left[\mathrm{G}\right]$	Mass hierarchy	$\sin^2 2 heta_{13}$	Group
MSW-NOR-S	0	Normal	10^{-6}	А
MSW-NOR-L	0	Normal	0.04	А
MSW-INV-S	0	Inverted	10^{-6}	А
MSW-INV-L	0	Inverted	0.04	В
RSF-NOR-S	10^{10}	Normal	10^{-6}	В
RSF-NOR-L	10^{10}	Normal	0.04	В
RSF-INV-S	10^{10}	Inverted	10^{-6}	А
RSF-INV-L	10^{10}	Inverted	0.04	С

- In this study, $\mu_v = 10^{-12} \mu_B$ is assumed.
- Each model is further categorized into three groups A, B and C, according to the detected ve signal.

Part II

Supernova neutrino oscillation with/without neutrino magnetic moment

- 1. Introduction
- 2. Formulation
- 3. Models for Numerical Calculation
- 4. Results & Discussion
- 5. Conclusions

Conclusion of Part II

- We investigated the RSF effect of supernova neutrinos for both normal and inverted mass hierarchy.
- If the RSF effect occurs efficiently, the detected signal is expected to be strongly dependent on the mass hierarchy.
- In particular for the RSF-INV-L model, there will be a sharp peak of neutronization burst in the events detected at SK.
- The neutrino spectra would be also different between the neutrino models.

Briefoverview

Supernova Relic Neutrinos

- Diffuse backgr past superr neutring
- Flux estimate
 - etector mance
- Implications for cosmic star formation history

Supernova Neutrino Burst and Flavor Conversion

- Flavor conversion ide supernova er
- E Contect signal at Super-K detector and its implications

