

Optics and Lens Image Intensifier

2004.1.9 Ashra Meeting @ UH Ashra-1 Collaboration Y.Asaoka, @ ICRR

Contents

- 1. Optical system
 - Design
 - Performance
- 2. Optical Component
 - R&D status
 - 1. Segment mirrors
 - 2. Collector lens
 - 3. Lens image intensifier
 - 4. Sub-telescope

Ashra Detector : Telescope

A detector consists of

- i) 4 sub-telescopes and
- ii) 1 photoelectric image pipeline.

4 sub-telescopes view the same direction to have better aperture in a cost-effective way.

High precision, high S/N ratio, and self triggering capability

Ashra Optics : Design

Details can be found in

<u>M.Sasaki et al, NIM A492 (2002) 49</u>

- Schmidt-type optics
- Spherical segment mirror
- Spherical focal surface
 - <u>3-element corrector lens</u>

Advantage: a large degree of freedom for optimization of lens surface shape to cancel

- 1. spherical aberration
- 2. chromatic aberration.

Ashra Optics : Performance (1)

Ashra Optics : Performance (2)

Optical Components

Components	Material and Method	Requirements		
Mirror	Tempax glass	• surface roughness < 20nm		
	• segmented	• spot size < 0.1mm		
	• mold + polish	• curvature radius ± 0.1%		
Corrector	• UV-transparent	• surface roughness < 20nm		
Lens	acrylic resin	• slope accuracy < 1 arcmin		
	• <u>normal lens</u>	amall and bacause of		
	 direct cutting w/ or w/o polishing 	 small sag because of corrector lens (no focusing) 		
Lens I.I.	• modification	• spot size < 0.16mm		
(I.I.= Image Intensifier)	from commercial X-ray II			

R&D status of each component

R&D Status : Mirror

Prototype Segment Mirror

Target performance:

- Surface roughness < 5nm
- Spot size < 0.16mm
- Curvature radius $\pm 0.1\%$

Mirror: Spot Size

Mirror: Curvature Radius

Curvature radius was measured with Newton standard.

R discrepancies between segment mirrors should smaller than 0.1%R discrepancies0.7%OK

Setup of mirrors curvature measurement

R&D Status : Mirror

Prototype Segment Mirror

Target performance:

- Surface roughness < 5nm
- Spot size < 0.18mm
- Curvature radius $\pm 0.1\%$

Prototype mirrors showed excellent performance. Thus production method for segment mirrors has been fixed.

R&D Status : Acrylic Corrector Lens

Direct measurements of lens surface show:

- surface roughness < 10nm
- slope accuracy < 1 arcmin
 Small prototype is OK!
 - Next Step: much larger lens sampling

Lens: 630mm Prototype

Prototype lens

n'9/-5東計#		
	曲線=R - 箇所=[1]	平均値
Ra (µm)	0.010	0.010
Fy (µm)	0.062	0.062
Rz (µm)	0.052	0.052

630mm lens Surface roughness: Ra=10nm

R&D Status : Lens I.I.

The lens I.I. works as the focal sphere detector which reduces the image size into solid state imaging devices.

Astigmatism in Electric Lens Source: energy and angular distribution of photoelectron

Lens I.I.: Resolution of Electrostatic Lens

Lens I.I. : Designing the Input Window

Modification from X-ray II

- Material: Al+CsI phosphor
 — UV-transparent glass
- Shape: Partial sphere to match focal surface of the telescope

Pressure endurance: one of the most critical issue of the input glass

To keep tensile stress below 10MPa

crack origin = the weakest point

Design of input window was fixed.

Lens I.I.: How to Make Input Window (1)

"Seed" of input glass A "seed" is blowed into a mold, and then took out from the mold. Only his part will be used as a "input window".

Lens I.I.: How to Make Input Window (2)

Melting and bonding the input glass window and the Kovar-ring part.

Lens I.I.: Current Status of Input Window

Finished Sample (Polished)

Evaluation of pressure endurance:

Maintain 5 minutes under the pressure of 3 atm.

~ 50-years endurance

Sufficient Pressure Endurance

Setup of the pressure endurance test: Pressurizing after pumping the inside.

R&D Status : Construction of Lens II

The final fabrication will be carried out soon.

R&D Status : Sub-Telescope

Integration test of optical system

- Achieve 1 arcmin resolution
- Develop fabrication processes

Sub-Telescope: Mirror Arrangement

300

600

400

S.Yamada

200

200

- 1. Cut to mount 4 segment mirrors
- 2. No deterioration after cut

Sub-Telescope: 630mm Lens Mount

Lens holding

Sub-Telescope: Lens I.I. Mount (1)

Requirements:

- Low obscureness
- Wide tuning range

Trying **Schwart Platform** as a R&D

Adopted in "Subaru" Telescope

Stick Joint Output Link

Ball Joint Static Link

Focal surface (x, y, z, , ,) Stick length (L1,L2,L3,L4,L5,L6)

Sub-Telescope: Lens I.I. Mount (2)

Utilizes commercial parts: Ball and stick joints

Lens I.I. mounting test: Schwart Platform works well.

Summary

Optical System

We have adopted the modified Baker-Nunn optics which has the capability to achieve 1 arcmin resolution within the whole FOV of $50^{\circ} \times 50^{\circ}$.

R&D Status

- Mirror : prototyping OK. Mass production preparation
- Corrector lens : small prototype is OK. 630 mm lens has been produced.
- Lens II : components design is fixed, and the fabrication will be carried out soon.
- Sub-telescope : integration test and final estimate of resolution of Ashra optics.

Ashra Collaboration

- Y. Aita1, T. Aoki1, Y. Arai2, Y. Asaoka1, T. Browder3,
- T. Hayashino5, W. S. Hou6, Y. B. Hsiung6,
- M. Ieiri2, M. Jobashi1, C. Jui8, J. Learned3, E. Loh8, N. Manago1, S. Matsuno3,
- J. Matthew8, K. Nakai10, S. Nakamura12, S. Ogawa13, A. Okumura1,
- S. Olsen3, K. Sakurazawa14, M. Sasaki1, N. Sugiyama15, Y. Tanaka16, N.Ujiie2,
- V. Vladimir8, M. Z. Wang6, Y. Watanabe14, S. Yamada1, and K. Yoshimura2
- (1) Institute for Cosmic Ray Research, Univ.Tokyo, Japan,
- (2) High Energy Accelerator Research Organization, Japan,
- (3) University of Hawaii, USA,
- (5) Tohoku University, Japan,
- (6) National Tai-wan University, Taiwan,
- (8) University of Utah, USA,
- (10) Tokyo University of Science, Japan,
- (11) Dept. of Physics, Univ.Tokyo, Japan,
- (12) Yokohama National University, Japan,
- (13) Toho University, Japan,
- (14) Tokyo Institute of Technology, Japan,
- (15) National Astronomical Observatory, Japan,
- (16) Nagasaki Institute of Applied Science, Japan

Ashra-1

Earth and Mountain Skimming v_{τ}

Ultra Long Baseline Neutrino Oscillation

- $\sim v_e: v_{\mu}: v_{\tau} = 1:1:1$
- > search for $\delta m^2 > 10^{-17} eV^2$
- pseudo-Dirac-v?(Beacom et al.)

Tau Dominant

- Tau range ~ 10km
- Muon range ~ 1km
- > $1200v_{\tau}$ 1τ (>1/10E_v)
- Maunaloa Mass >1000Km³weq

Arrival Direction Conservation

High Lorentz boost

 \triangleright

Accuracy < 1arcmin $(E_v > 10 PeV)$

Ashra EHEv Sensitivity

Comparison

Detector	AGASA	HiRes	ASHRA-1	Auger	ASHRA-2	IceCube
Obs. Start	1990	1998	2005 ?	2005 ?	2007 ?	2010 ?
Method [Readout Device]	Gnd [PMT]	Fluo. [PMT]	Fluo. + Cerenkov [II+CMOS]	Gnd + Fluo. [PMT]	Fluo. + Cerenkov [II+CMOS]	Water Cerenkov [PMT]
Dir. Accuracy(°)	2~3	0.5~0.8	0.01~0.02	1.0~2.0	0.01~0.02	0.4
Protons / yr (>10 ²⁰ eV)	1	6	15	41	34	
ν s / yr AGN(>10 ¹⁶ eV) GZK(>10 ¹⁹ eV)		<1 	11 1	27	26 2	16
Cost (\$)	2M	6M	5M	50M	12M	260M

Excellent cost-performance and originality

MC performance for EHE

Earth-skimming tau

MC performance: EHECR

10 20

1324

259

34

10 21

(eV)

Advantages of Fine Imaging

1 arcmin resolution

Equivalent to human "eye" resolution

Observation of GRB optical flash (loka's suggestion)

Accurate estimation of arrival direction

Identification of appearance from earth or mountain

Sensitivity up!

trigger S/N imaging of distant shower

Very High Energy Neutrinos (VHE v's)

Gamma Ray Burst

Active Galactic Nuclei

GZK Mechanism

Ashra-1 PI

M.Sasaki

Studying origin and propagation of VHE cosmic rays

Detection of VHE ν 's

Ashra-1 PI

M.Sasaki

New Eye for Particle Universe

Ashra-1 PI M.Sasaki

Key Technology:

9M-pixel CMOS sensor covering 50deg FOV

Leading Features:

All-sky Survey => Discovery Potential

1arcmin directional accuracy => Source ID

Simultaneous Detection for Cerenkov & Fluorescence => Physics ID

Ashra-1 station 12 telescopes

with 50deg FOV

Pioneer Experiment for VHE Particle Astronomy:

Direct Detection of VHE

To identify proton acceleration, detection of VHE neutrinos plays the key role.

Detection Technique of EHECR

EHECRs

interacting at the upper atmosphere

Air shower

emitting fluorescence and Cherenkov photons

gathering lights w/ telescope

Advantages of Fluorescence Technique

1. Measuring AS longitudinal development

Clear identification of VHE

2. Stereo Observation

1st Observation of VHE-

High-resolution Telescope

Ashra Optics : Components

Ashra Optics : Optimization Method

Optimization parameters: surface shape of corrector lens

Surface Shape:

$$Z = \frac{h^2/R}{1 + \sqrt{1 - h^2/R^2}} + Ah^4 + Bh^6 + Ch^8.$$

Evaluation function:

$$F = \sum_{\theta} \left(\sum_{\lambda} s(\theta, \lambda)^2 \right)^2$$

wavelength
consider fluorescence peak
incident angle

Modified Powell's method

To reduce the # of free parameters, thickness and position of corrector lens are fixed.

Z: Surface sag h: radial height R: curvature A,B,C: correction term s(): spot size(RMS)

Region obscured by the focal surface

Incident angle [deg]

R&D Status : Mirror

Shape: **Process**:

Material: Tempax glass (Schott corp.) segmented spherical mirror heating a planar glass on a ceramic mold plate

Sampling of segmented mirror

Structure Analysis:

Estimate surface sag caused by self weight using finite element method

design mounting system and determine thickness of the mirror

Prototype of Segment Mirror

The segment mirror is shaped by heating a planar glass on a ceramic mold plate in the temperature controlled electric oven.

To improve spot size:

- A support disk is glued before polishing
- Support disk itself is made of glass
- Polishing time: 16 hr

Prototype Mirror : Spot Size Measurements

- 2. Electric lens:
- **3. Output window:**

AI+CsI phosphorUV-transparent glassDesign new field configurationPlane glassSpherical FOPPatent Pending

Resolution Matching

1 arcmin resolution $\sigma=0.16$ mm @focal surface=I.I. input surface

<u>16 inch X-ray I.I. (commercial)</u> 4.6Lp/mm @ input surface (magnification factor ~ 10)

UA3P

Ultra-high Accuracy 3D Profilometer

UA3P uses a nondestructive laser and <u>atomic force probe</u> to measure aspherical surfaces with an accuracy from 0.01 to 0.05 μ m. It features the finest stylus, with a tip radius of curvature measuring just 2 micron. The stylus, which is diamond, is key to obtaining the high precision accuracy of 10nm.

Adjustment Precision

Components		1 st Adjustment Precision	Required Mounting Precision
Mirror	XY	0.02 [mm]	0.05 [mm]
	Ζ	0.02 [mm]	0.05 [mm]
		0.03 [arcmin]	0.1[arcmin]
Lens	XY	0.6[mm]	0.1[mm]
	Ζ	0.2 [mm]	0.1[mm]
		0.2[arcmin]	0.2[arcmin]
I.I.	XY	0.7 [mm]	0.1[mm]
	Ζ	0.3 [mm]	0.05[mm]
		1[arcmin]	0.8[arcmin]

Ashra Detector

Ashra is a new air Cherenkov & fluorescence detector.

Distinctive Features:

- All-sky Survey 2 sr
- Higher resolution 1 arcmin
- Simultaneous observation
 - TeV ,
 - EHE p/ ,
 - VHE

Sugiyama-san's and Kohri-san's talks (OG2.5-14 Aug.5, HE3.4-5 Aug.6)

Ashra station:

- 12 telescopes / station
- All-sky (2 sr) / 80M pixels

