1/8/04, Ashra meeting

Earth Skimming VHE Neutrinos

G.-L.Lin National Chiao-Tung University, Taiwan

Outline

- Neutrino oscillations and Astrophysical Tau Neutrino Fluxes
- The Rationale for Detecting Earth-Skimming or Mountain-Penetrating Neutrinos
- The Rough Estimate of Tau Lepton Fluxes
- Tau Lepton Fluxes from Mountain-Penetrating AGN, GRB, and GZK Tau Neutrinos
- Tau-Lepton Energy Fluctuations and Advantages for Detecting Mountain-Penetrating Neutrinos
- Conclusions

Neutrino oscillations and astrophysical v_{τ} fluxes

• Although v_{τ} flux from the source is suppressed compared to that of v_{μ} and v_{e} , the oscillation effects make the flux of each flavor comparable at the earth. The idea of observing v_{τ} in view of neutrino oscillations, was suggested sometime ago.

Learned and Pakvasa 1995

For a source in a cosmological distance, with

 $v_e : v_\mu : v_\tau = 1:2:0$, the oscillation effects taking place as the neutrinos reach the terrestrial detector make

 $v_{\rm e}: v_{\mu}: v_{\tau} = 1:1:1.$

Athar, Jezabek, Yasuda 2000

Tau neutrino fluxes

Athar, Tseng and Lin, ICRC 2003

Detecting Earth-Skimming v_{τ}

The Rationale

The idea of detecting earth-skimming neutrinos....

Domokos and Kovesi-Domokos, 1998 Fargion, 1997, 2002 Bertou et al., 2001 Feng et al., 2001 Bottai and Giurgola, 2002 Tseng et al., 2003 ν_τ N only scatters once.
τ produced near the earth surface.

•effective interaction region– 1 tau range!

 τ Energy losses and decays

 v_{τ} N inelasticity

τ

The "effective" tau lepton production probability =Tau Range(\mathbf{R}_{τ}) / v_{τ} N interaction length(λ_{τ})

• \mathbf{R}_{τ} increases with energy, while λ_{τ} decreases with energy. Hence it is favorable to detect neutrinos of higher energies!

Tau lepton range approaches to 20 km in rock. Mountain-penetrating is sufficient!

Mountain-penetrating tau neutrinos/tau leptons

Gandhi, Quigg, Reno, Sarcevic, 1998The $v_{\tau}N$ interaction length:

$$2 \times 10^4 \,\mathrm{km} \left(\frac{1 \,\mathrm{g/cm^3}}{\rho}\right) \left(\frac{E_{\nu}}{10^{15} \,\mathrm{eV}}\right)^{-0.363}, \, \rho = 2.65 \,\mathrm{g/cm^3} \text{ in rock}$$

The "effective" tau lepton production probability

The Rough Estimate of Tau Lepton Fluxes

A qualitative picture:

 $-\frac{dE_{\tau}}{dX} = \alpha + \beta E_{\tau}$

$$P_{T} = \int_{0}^{z} dz P_{s}(E_{v}, z) p_{cc}(E_{v}) P_{\tau}(E_{\tau}, L-z)$$

$$P_{s} = \exp\left(-\frac{z}{\lambda_{v}^{cc}(E_{v})}\right), p_{cc} = \frac{1}{\lambda_{v}^{cc}(E_{v})},$$

$$P_{\tau}(E_{\tau}, x) = \exp\left[-\frac{1}{\beta\rho d_{\tau}(E_{\tau})}(\exp[\beta\rho x]-1)\right].$$

Let us take
$$E_{\tau}^{i} = E_{\nu} \equiv E$$
 and define $r = \log_{10} \left(\frac{E}{E'} \right)$, where

E' is the exiting tau lepton energy.

$$\frac{dP_T}{dr} = \exp\left(-\frac{1}{\lambda_v^{cc}(E)}\left(L - \frac{r\ln(10)}{\beta\rho}\right)\right) \times \frac{\ln(10)}{\beta\rho\lambda_v^{cc}(E)} \\ \times \exp\left[-\frac{1}{\beta\rho d_\tau(E)}\left(10^r - 1\right)\right]$$

For *E* around 10^{18} eV, $\beta \approx 8 \times 10^{-7}$ g⁻¹ cm²

$$0 \le r \le \frac{\beta \rho L}{\ln(10)} \approx (L/10 \text{ km})$$
$$\beta \rho d_{\tau}(E) = 10 \times \left(\frac{E}{10^{18} \text{ eV}}\right)$$

E: initial v_{τ} energy, E': final τ energy, r=Log(E/E') New physics means a factor of 10 enhancement on $\sigma_{\nu N}$

Log(E'/eV)

•The differential spectrum dP_T/dr remains rather flat for E' $\geq 10^{17}$ eV. This causes a pile up of tau leptons at E' $\approx 10^{17}$ eV.

•The energy reconstruction for the initial neutrino energy becomes a challenge beyond 10¹⁷ eV!

•The enhancement on σ_{vN} generally brings enhancement on dP_T/dr for L=30 km. It is not the case for L=100 km due to the medium absorption.

Tau Lepton Fluxes

The detailed calculations

(A). The Tau Lepton Range

The tau lepton loses its energy in the rock through 4 kinds of interactions:

(1). Ionization (α): the tau lepton excites the atomic electrons. H. A. Bethe 1934
(2). Bremsstrahlung (β):

Basic component

The nucleus shadowing effect is considered:

$$a(A, x, Q^{2}) = \frac{F_{2}^{A}(x, Q^{2})}{AF_{2}^{N}(x, Q^{2})}$$

Brodsky & Lu, 1990; Mueller & Qiu 1986; E665 Collab. Adams *et al.*, 1992

Summarizing all these:

The τ energy loss: Iver Dutta, Reno, Sarcevic, & Seckel, 01

$$-\frac{dE_{\tau}}{dX} = \alpha + \left(\sum_{i} \beta_{i}\right) E_{\tau}, X \text{ in units of } g/cm^{2},$$

 α and β_i 's are plotted below.

The Tau Lepton Range:

$$\frac{dP(E,X)}{dX} = -\frac{P(E,X)}{d_{\tau}(E)\rho(X)}, -\frac{dE}{dX} = \alpha + \beta(E)E.$$

Then $R_{\tau}(E_0) = \int_0^\infty dX \ P(E_0, X).$

Note that we can parameterize

$$\beta(E) = \left[1.6 + 6 \left(E / 10^{18} \text{ eV} \right)^{0.2} \right] \times 10^{-7} \text{ g}^{-1} \text{ cm}^2$$

Iyer Dutta, Reno, Sarcevic, & Seckel, 01

(B). The Tau Lepton Fluxes

The transport equations:

For the τ lepton :

$$\frac{\partial F_{\tau}(E,X)}{\partial X} = -\frac{F_{\tau}(E,X)}{\rho d_{\tau}} + \frac{\partial}{\partial E} [\gamma(E)F_{\tau}(E,X)] + G_{\nu}(E,X),$$

with
$$G_{\nu}(E, X) = N_A \int_{y_{\min}}^{y_{\max}} \frac{dy}{1-y} F_{\nu}(E_y, X) \frac{d\sigma_{\nu N \to \tau Y}}{dy}(y, E_y),$$

and
$$\gamma(E) \equiv \alpha + \beta(E)E = -\frac{dE}{dX}$$
.

One can solve for $F_{\tau}(E, X)$ to obtain

$$F_{\tau}(E, X) = \int_{0}^{T} dT G_{\nu} \left(\overline{E}(X - T; E), T\right) \times \exp\left[\int_{T}^{X} dT' \left(-\frac{m_{\tau}c}{\tau_{0}\overline{E}(X - T'; E)\rho} + \gamma' \left(\overline{E}(X - T'; E)\right)\right)\right]$$

For the resonant scattering at the W boson peak,

we set
$$G_{v}(E, X) = N_{A} \int_{y_{\min}}^{y_{\max}} \frac{dy}{1-y} F_{\overline{v}_{e}}(E_{y}, X) \frac{d\sigma_{\overline{v}_{e}e^{-} \to \overline{v}_{\tau}\tau^{-}}}{dy} (y, E_{y}).$$

For neutrinos,

$$\frac{\partial F_{\nu_{\tau}}(E,X)}{\partial X} = -\frac{F_{\nu_{\tau}}(E,X)}{\lambda_{\nu_{\tau}}} + N_A \sum_{i=1}^{3} \int_{y_{\min}^{i}}^{y_{\max}^{i}} \frac{dy}{1-y} F_i(E_y,X) \frac{d\sigma_{\nu_{\tau}}^{i}}{dy} (y,E_y),$$

where $\sigma_{\nu}^{1,2,3}$ are $\sigma(\nu_{\tau}N \to \nu_{\tau}Y), \Gamma(\tau \to \nu_{\tau}Y)/c$, and
 $\sigma(\tau N \to \nu_{\tau}Y).$

For $\overline{\nu}_{e}$, we have

$$\frac{\partial F_{\overline{v}_e}(E,X)}{\partial X} = -\frac{F_{\overline{v}_e}(E,X)}{\lambda_{\overline{v}_e}} + N_A \int_{y_{\min}}^{y_{\max}} \frac{dy}{1-y} F_{\overline{v}_e}(E_y,X) \frac{d\sigma_{\overline{v}_e e^- \to \overline{v}_\tau \tau^-}}{dy} (y,E_y).$$

Note
$$F_i(E, X) \equiv \frac{dN_i}{d(\log_{10} E)}$$
 is in units of cm⁻²s⁻¹sr⁻¹.

AGN v_{τ} flux inferred from Kalashev, Kuzmin, Semikoz, and Sigl, 03

GRB v_{τ} flux inferred from Waxman and Bahcall 1997

GZK v_{τ} flux inferred from Engel, Seckel, and Stanev, 01

W boson contribution

Glashow resonance 1960

$$\overline{\nu}_{e}e^{-} \to W^{-} \to \overline{\nu}_{\tau}\tau^{-}$$

$$F_{\tau}(E, x) = F_{\overline{\nu}_{e}}(E_{R}, 0) \times 3.3 \cdot 10^{-4} \times \left(\frac{E}{E_{R}}\right) \times \left(1 - \frac{E}{E_{R}}\right)^{2} \cdot \exp\left(-\frac{X}{L_{R}}\right),$$

where $E_R \equiv \frac{m_W^2}{2m_e} = 6.3 \times 10^6$ GeV is the resonant energy;

 $L_R = 60$ kmwe is the resonant scattering length

Integrated tau lepton flux in units of km⁻²yr⁻¹sr⁻¹

Energy & flux	AGN	GRB	GZK
10 ¹⁵ -10 ¹⁶ eV	2.2	9.6×10-3	7.4×10-5
10 ¹⁶ -10 ¹⁷ eV	4.9	7.1×10-3	1.1×10-2
10 ¹⁷ -10 ¹⁸ eV	0.2	5.4×10-4	8.2×10 ⁻²
10 ¹⁸ -10 ¹⁹ eV		1.1×10-5	3.3×10-2

W resonance (AGN) 0.08

Effective aperture $(A\Omega)_{eff}$ required for 1 event/yr, assuming a 10% duty cycle.

Energy & Aperture (km ² sr)	AGN	GRB	GZK
10 ¹⁵ -10 ¹⁶ eV	4.5	1000	
10 ¹⁶ -10 ¹⁷ eV	2.0	1400	910
10 ¹⁷ -10 ¹⁸ eV	50	19000	120
10 ¹⁸ -10 ¹⁹ eV			290

Can we identify the source of neutrinos?

Sensitive to spectral indices

Sensitive to spectral indices

Tau lepton energy fluctuations

Assume averaged energy loss for each step. Huang, Tseng and Lin, ICRC 2003

Full simulation (take into account stochastic nature of tau-lepton energy loss) is in progress...

Huang, Iong, Lin and Tseng

Huang, Tseng and Lin, ICRC 2003

Huang, Tseng and Lin ICRC 2003

Conservative estimate !

This is essentially the pileup of tau lepton events at 10^{17} eV as seen before! In other words, the tau lepton energy resolution gets worse for $E_{\tau} > 10^{17}$ eV!

Advantages for Detecting Mountain-Penetrating Neutrinos over the Earth-Skimming Ones

Comparison of solid-angle coverage of earth-skimming and mountain-penetrating tau-neutrino experiment:

For the mountain-penetrating case:

w = 20 km

l (distance from mountain to detector)

= 20 km

h (height of the mountain) = 2 km

The solid angle is

$$\frac{(20 \times 2 \text{ km}^2)}{(20^2 \text{ km}^2)} = 0.1$$

Both cases are comparable if 100 km is acceptable for energy resolution. But the latter is preferred if better energy resolution is required! For a smaller medium depth, say L about few tens of kilometer, the enhancement on σ_{vN} also brings an enhancement on the tau lepton flux.

p. 16, 17

Conclusions

- We have presented the essential features of detecting Earth-skimming or mountain-penetrating v_{τ} .
- The tau lepton flux resulting from mountainpenetrating ν_τ is calculated. *The flux shows rather weak dependence on the traveling distance of* ν_τ/τ inside the mountain. It is controlled by the tau lepton range inside the earth.

The tau lepton flux already reaches its maximum for 20 km of medium depth. Larger medium depth results in poorer energy resolutions. *This justifies the observations of mountain-penetrating neutrinos.*

We give effective aperture required for detecting 1 event/yr assuming a 10% duty cycle.

The tau lepton flux resulting from mountain-penetrating neutrinos could be enhanced by anomalously large neutrino-nucleon scattering cross section at high energies.