Sorry for not being able to attend this meeting!

Astrophysical Aspect of

ASHRA

Naoshi Sugiyama National Astronomical Observatory Japan

ASHRA

Detect both fluorescence & Cherenkov Simultaneous observations of EHE cosmic rays (p/ γ), TeV γ , VHE ν , optical photon Superb angular resolution: 1 arcmin ■ Wide field of view Relatively cheap cost: phase 1, \$ 5mil: Funded! What are the major scientific outcomes? What can we learn about astrophysics?

Scientific Cases

High Energy Neutrinos
High Energy Gamma Rays
Ultra High Energy Cosmic Rays
Optical Photons

(1) High Energy Neutrinos ASHRA has unique capability to detect v's $E_v > 10^{16} eV$ • AGN jets If e⁻-p jets: high energy v emission is generated $p + \gamma \rightarrow \Delta^+ \rightarrow N \pi^+ \rightarrow \mu^+ + \nu_{\mu} \rightarrow e^+ \nu_{\mu} \nu_{\mu} \nu_{e}$ **Key question:** e⁻-p or e⁻-e⁺?? • If e⁻-p, protons are accelerated by AGN Jets! How large can AGNs accelerate protons? - Origin of high energy cosmic rays -

Core of Galaxy NGC4261 Hubble Space Telescope

Wide Field/Planetary Camera

380 Arc Seconds 88,000 LIGHT-YEARS 17 Arc Seconds 400 LIGHT-YEARS

Neutrino sensitivity

Ashra-1

• Gamma-ray Bursts

• Photo-pion interactions generate v's if p is accelerated: internal (reverse) shock • failed GRBs can be measured by v's Coincidence measurements are important:

optical flush, high energy v

1000events/yr.

• Other Sources of high energy v's

- Ultra high energy CR origin: GZK cutoff
- Galactic pulsars
- Galactic Center Black Hole
- Cosmic String? Z-burst?, Q-ball???

ASHRA can open the door to the new era of v astronomy

(2) High Energy Gamma Rays **ASHRA** has unique capability to carry out All-sky **Gamma-ray monitoring** Gamma-rays from UHECR sources •Source object identification •Energy spectrum provides information of soruce Monitoring observations of transient objects •TeV gamma-rays associated with GRB? •Time variability of Blasers

•TeV gamma-ray all-sky survey

- •Better understanding of known types of gammaray sources
- •Information of un-identified GeV gamma-rayssources by EGRET
- •Determination of IR background
 - TeV γ -IR γ annihilation:

Constrain IR background, AGNs & GRBs TeV gamma

Third EGRET Catalog

E > 100 MeV

(3) Ultra High Energy Cosmic Ray **ASHRA** is expected to detect 33 events/yr. > 10²⁰eV **Particle Identification is possible (unlike AGASA).** Together with gamma-rays and neutrinos: we can clarify the sources of UHECR: •AGN jets •GRBs •Formation shocks of Cluster of galaxies •Strong magnetic field neutron stars •?

Inoue & NS

(4) Optical Photons **Optical flush of Gamma-ray bursts GRB030329** 12 magnitude: one hour after the burst 18 magnitude: two days after the burst Observed by 30cm telescope in Tokyo! (TITECH) Very Bright BUT only for a couple of hours All sky monitor is needed! ASHRA will be ideal to observe this phenomena - thanks for the wide field of view! -**Information of central engine?**

2003/3/29 21:57

3/30 0:00

1 hour after burst

3 hours after burst

3/30 2:08

3/30 3:32

5 hours after burst

6.5 hours after burst

GRB030329

ASHRA is a really unique project to probe High energy astrophysics by observing both Fluorescence & Cherenkov which makes us possible to measure **EHE-CR, TeV** γ, VHE ν, optical light simultaneously!