VHE Particle Astronomy
with
All-sky Survey High Resolution Air-shower telescope
(Ashra)

Ashra Collaboration
Makoto Sasaki
(ICRR, University of Tokyo)
One of Buddha’s eight protectors to serve wisdom and harmony
Ashra Collaboration
under development

Y.Aita, Y.Arai, Y.Asaoka, T.Browder, F.Fukagawa, T.Hayashino, W.S.Hou,
Y.B.Hsiung, M.A.Huang, M.Ieiri, M.Jobashi, H.Kuze, J.Learned,
N.Manago, T.Masuda, S.Matsuno, K.Noda, S.Ogawa,
A.Okumura, S.Olsen, K.Sakurazawa, M.Sasaki,
N.Sugiyama, N.Ujiie, H.Usami, M.Z. Wang,
Y.Watanabe, S.Yamada, M.Yasuda

University of Hawaii
National Taiwan University
National United University

Institute for Cosmic Ray Research, Univ.Tokyo
High Energy Accelerator Research Organization
National Astronomical Observatory
Tokyo Institute of Technology
Tohoku University
Chiba University
Toho University
Source Candidates of VHE Particles

Gamma Ray Burst

Active Galactic Nuclei

Proton Acceleration in AGN

Studying origin and propagation of VHE cosmic rays
Air Shower Detectors

$X_{\text{max}} = 800 \text{g/cm}^2$

10^{18}eV proton

$p, \text{Fe, } \overline{\text{p}}, \overline{\text{e}}, \overline{\text{e}}$

interaction

Fluorescence telecope

$\sim 5 \text{ UV } /e/m$

Cerenkov lights

1~2 km

Ground sampling detector

Air 1000 g/cm2

= 28 rad. length

= 11 int. length

Cerenkov telescope

25 km

6 km

XX$_{\text{max}}$ = 800 g/cm2
Ashra: Imaging Particle Detector

Key Technology

9M-pix. CMOS Sensor Covering 50deg-FoV

4,500x3,000 (14M) pix. Commercial CMOS Camera

Pixel Cost Reduction by $O(10^4)$
New Eye for Particle Universe

Key Technology:
- 9M-pixel CMOS sensor covering 50deg FOV

Leading Features:
- All-sky Survey => Discovery Potential
- 1arcmin directional accuracy => Source ID
- Simultaneous Detection for Cerenkov & Fluorescence => Physics ID

Pioneer Experiment for VHE Particle Astronomy: Ashra-1
protons, γs \rightarrow light emission after interaction with the air
neutrinos \rightarrow light emission after interaction with and passing through the earth
Design of Ashra Optics

Modified Baker-Nunn

- Schmidt-type optics
- Spherical segment mirror
- Spherical focal surface
- 3-element corrector lens

Advantage: a large degree of freedom for optimization of lens surface shape to cancel
1. spherical aberration
2. chromatic aberration.

Details can be found in *M. Sasaki et al, NIM A492 (2002) 49*
Ashra Optics has a capability to achieve 1 arcmin resolution within the whole FOV of ± 25°.

Spot size = 0.0167° (1 arcmin)

from weighted sum of several wavelength

using ZEMAX by A. Okumura
Importance of Fine Image

1 deg. resolution

Virgo cluster

Traditional Fluo. Tele.

1 arcmin. resolution

Virgo cluster

Ashra

• Source Location

⇒ Real astronomy
⇒ Reliable ID for Earth-skimming and Mt. Neutrinos

• Higher Sensitivity

⇒ Imaging for further AS
Focal sphere => Image Intensifier Pipeline => CMOS Sensor

Lens I.I.

- 4.6 Lp/mm => ~70 μm @ input surface
- magnification factor ~ 10

Proximity focused I.I.

- 46 Lp/mm => ~7 μm ~ CCD pix. size
- magnification factor = 1

- Photocathode
- Photon
- Photostimulated phosphor screen
 - φ 18-25mm
 - Gate pulse >5ns

Commercial

- Minimum modification of focal surface

Our Lens I.I.
Photoelectric Image Pipeline

Prototype
MC performance for UHECR

Stereo Event Rate (duty10%)

<table>
<thead>
<tr>
<th>Threshold</th>
<th>Events/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{19}eV</td>
<td>1324</td>
</tr>
<tr>
<td>$10^{19.5}$eV</td>
<td>259</td>
</tr>
<tr>
<td>10^{20}eV</td>
<td>34</td>
</tr>
</tbody>
</table>

Ashra-phase2

- Auger ≥ 10
Capability of Charge Separation

ASHRA

Angular Resolution

1 arcmin

- Charge ID with Magnetic Deflection
MC performance: TeV-

- Energy threshold ~ 1 TeV @ 1600m alt
- Not need to share the observation time
 => Higher statics => Better dir. accuracy.
Shower Event Examples

\(\sqrt{1.9} \) - like

\(p \)-like

source
Tau Neutrino Detection using Earth and Mountain

Earth Skimming Tau Neutrino

Fargion et al. (2003)
Sasaki, Asaoka and Jobashi (2002)
Giesel et al. (2003)*

Tau Appearance
Vacuum Oscillation Experiment with Super-long Baseline

- $\nu_e : \nu_\mu : \nu_\tau = 1:1:1$
- Search $\delta m^2 > 10^{-17} eV^2$
- pseudo-Dirac-ν?

(Beacom et al, astro-ph/0307151)

by NuTel

Tau Cerenkov AS from Mountain
Flavor Dependence of Propagation Process in Rock

Tau dominates appeared leptons at VHE
- Range of tau ~ 10km
- Target Mass of Mauna Loa > 1000Km³-weq
Earth-skimming Tau Flux

(Tseng, et al. PR D68, 063003 (2003))

GRB- and GZK- events require 100km²/ as effective detection area.

=> km³-water detector is difficult. => advantage of air-light detector
Neutrino Sensitivity

- 1 event/year/decade of energy (curve)
- 90% upper limit assuming E^{-2} flux (horizontal line)

Ashra can keep the best sensitivity in the whole range $E>100\text{TeV}$

Great Chance of the first detection VHE Neutrinos
Integration test of optical system
- Achieve 1 arcmin resolution
- Develop fabrication processes

2 mirrors have been adjusted.
Ashra Project Plan

2002 2003 2004 2005 2006 2007

phase 0 Ashra Prototype Optical Flash obs.
R&D

phase 1 Pioneering

phase 2 High Statistics

sub-telescope

Expected Fluo. Event Rate for Earth-skimming \(\nu \)'s
- GRB : 2 /yr
- AGN : 26 /yr
- GZK : 2 /yr
(Cerenkov and Mountain effects not included)

prototype in labo. 2 Mt.s on the Hawaii Is. 3 Mt.s on the Hawaii Is.