A Detailed Spatial and Spectral Study of Synchrotron X-Rays from Supernova Remnants with Chandra

Aya Bamba (Kyoto Univ. CR group)

0. Contents

- Introduction
 宇宙線加速、超新星残骸
- 2. 観測諸元
- 3. SN1006観測結果

観測結果とその解釈

- 4. その他の超新星残骸観測結果 4つの超新星残骸と1つのsuper bubble
- 5. 議論

超新星残骸の進化と宇宙線加速の関係

- 6. まとめ
- 7. 今後やりたいこと

1.1. 宇宙線とは?

1.2. 宇宙線加速機構

衝撃波加速 (Bell 1978, Blandford & Orstriker1978, Drury 1983,)
大局的に最も成功した宇宙線加速理論

✓ 荷電粒子が衝撃波往復時にエネルギーを得る現象
 ✓ 磁場揺らぎによる反射で往復
 ✓ 加速粒子のスペクトルはpower-law
 (観測された宇宙線スペクトルと一致)

1.2.3分で分かる衝撃波加速原理(1) terminology

1.2.3分で分かる衝撃波加速原理(2)衝撃波加速 上流·下流内では弾性散乱(衝撃波静止系)

衝撃波を行き来するたびに加速 加速された粒子のspectrum: 実際に計算してください

1.3. 加速現場: 超新星残骸衝撃波 星最後の大爆発 (E~10⁵¹ erg) → ~10³⁻⁴km/sの衝撃波 ~10⁴ years knee energyまでの有力な宇宙線加速源 爆発 自由膨張段階 $M_{ejecta} >> M_{ISM}$ 減速無しの自由膨張 R~t, v~const. $t_{age} < 10^{2-3} \text{ yrs}$ $M_{ejecta} \sim M_{ISM}$ Sedov膨張段階 断熱膨張 R~t^{2/5}, v~t^{-3/5}, T~t^{-6/5} 10^{2-3} years < t_{aqe} < 10^{3-4} yrs 年齡

1.4. 残された課題

定量的な議論はまだほとんどなされていない √加速粒子の最高エネルギーは? √衝撃波での磁場構造・乱流度は? √粒子の加速効率は? ✓超新星残骸の進化と加速の関係は? 手がかりとなりうる情報 gyro半径·磁場の乱流度 粒子の空間分布 (過去の観測では無理) 電子の最高エネルギー・磁場 スペクトル タイムスケール・進化 衝撃波年齢

これらを観測的に求めよう!

2.1. 宇宙線加速起源を探る手段: 硬X線観測

1. 高い透過力と直進性 2. 高空間・波長分解能

遠くの加速源まで見える 加速現場の詳細構造 熱的成分との分離が可能

実例: 超新星残骸SN1006からの シンクロトロンX線発見 (Koyama et al. 1995)

ASCAによるSN1006のX線画像

2.2. X線天文衛星*Chandra* (1999年打ち上げ)

✓高い空間分解能 (0.5 arcsec!) 粒子の空間分布!
 ✓良いエネルギー分解能 (CCD: 130 eV@6.4 keV)
 ✓比較的広いエネルギー帯 (0.3 - 10 keV)
 ✓十分な視野 (17arcmin x 17arcmin)

● 本研究に最適の観測手段

SN1006 (AD1006)

RCW 86 (AD184)

Tycho (AD1570)

2.3. 観測ターゲットおよび観測時間

	Cas A	Kepler	Tycho	SN1006	RCW 86	30DorC
年齢 (yrs)	320	396	428	994	1816	•••
距離 (kpc)	3.4	4.8	2.3	2.18	2.8	50
年径 (arcsec	160	110	260	900	1260	120
Exp. (ksec)	50	49	49	68	92	99

若くて近い超新星残骸を探査 (Sedov段階) 歴史的shell型超新星残骸はほぼ100%網羅

(Optical spectra and proper motion) 比較的近いSNR 直径: 30 arcmin = 19 pc @2.18 kpc 年齢: 1006年に爆発 藤原定家が日記に 過去の言い伝えとして書き残す 光度曲線 la型SNR

に招二百

部言度的

名月記 (国宝) 過去の客星の記録がまとめられている

合うまちに 皇聖天皇元年秋七月甲寅客星入月 限調香近去、手之月、後七月、一方 客早 の成院員観ナルショシ月廿音丁南水時客星 在降見云方 客屋を東風得ます相二十四 ろう大日信見平 え下す 用茶店 る山王のいとう 大谷星力荣武元明動 見い三年二月一日美肉夜 「二年 はオキテテアママ 一月三日しせ死時客号見大 SA 三年三月元日 同軍日マテスを 金好 丁口 大かちょう 時ちきを見た 日日生ち

3.3. Filament analyses (1) method

- 1. 2.0 10.0 keV bandで断面図を作成
- 2. 断面図をfilament modelでfitting

$$f(x) = C + \begin{cases} A \exp\left[-\left|\frac{x_c - x}{w_u}\right|\right] & upstream \\ A \exp\left[-\left|\frac{x_c - x}{w_d}\right|\right] & downstream \\ C: background, A: normalization \end{cases}$$

x_c: peak position, w: width of filament u: upstream, d: downstream

3. Filamentのspectrumを作成

power-law exponential cutoff

} 電子からのシンクロトロン放射

 $v_{rolloff} = 5 \times 10^{17} Hz \left(\frac{B}{10 \mu G} \right) \left(\frac{E_{max}}{100 TeV} \right)^2 \left(\begin{array}{c} Reynolds \& Keohane (1999) \end{array} \right)$ $\alpha = 0.57 @1GHz (fixed) (Allen et al. 2001)$ $v_{rolloff} = 2.6 (1.9 - 3.3) \times 10^{17} Hz$ Flux = 1.8 x10⁻¹² ergs cm⁻²s⁻¹

From equations to parameters

known parameters: u_s, v_{rolloff}, w_u, w_d

unknown parameter決定に使う条件 $\checkmark B_d = B_u (\cos^2\theta + r^2 \sin^2\theta)^{1/2}$ $\checkmark v_{rolloff} \sim BE^2$ $\checkmark \xi_d < \xi_u$ w_u, w_d は? 場合によって違う A. Age limited case (まだ加速中) $t_{acc} = t_{age} < t_{loss}$

B. Loss limited case (減速開始)

$$t_{loss} = t_{acc} < t_{age}$$

Restriction of parameters!

3.5.2.A. Age limited case

On the other angle....

もはや衝撃波面に返ってくる必要はない

- 上流:一番小さいscaleが見える
- 下流: 一番大きいscaleが見える

 $w_{u} = \min \{K_{u}/u_{u}, (K_{u}t_{cool})^{1/2}\}$ $w_{d} = \max \{u_{d}t_{cool}, (K_{d}t_{cool})^{1/2}\}$

3.6. 加速効率 (Injection efficiency) Age-limited, θ=90°の時を考える

求めた磁場

熱的プラズマ放射 synchrotronX線のflux 広帯域粒子spectrum

■ 電子エネルギー密度 u_

過去の解析より高いinjection efficiency **※い領域で効率よく加速** 局所的にほぼequipartitionに達している 3.7. SN 1006まとめ Age limited case; $\xi_d \sim 1$ $B_{d} = 14 - 78 \ \mu G$ $E_{max} = 22 - 69 \text{ TeV}$ Loss limited case; $\theta < 30^{\circ}$ $\xi_{\rm d} \sim \xi_{\rm u} \sim 1$ $B_{d} = 23 - 85 \mu G$ $E_{max} = 21 - 54 \text{ TeV}$

Anyway, B_d: fully turbulent (Bohm limit) 14 - 85 μG B_u: 3.5 - 85 μG E_{max}: 20 - 70 TeV

Injection efficiency: 狭い領域で効率よく加速

初めてscale lengthを測定 $W_u = 9.6 (6.8-13.2) \times 10^{-3} \text{ pc}$ $W_d = 1.8 (1.3 - 2.9) \times 10^{-2} \text{ pc}$ $v_{\text{rolloff}} = 2.4 (>0.18) \times 10^{18} \text{ Hz}$

Kepler: 二番目に若いhistorical SNR

初の非熱的X線検出! w_u = 3.0 (2.0-4.0) x10⁻² pc w_d = 5.0 (4.0-6.0) x10⁻² pc v_{rolloff} = 3.6 (2.0-7.9) x10¹⁷ Hz

Tycho: "filaments with small E.W."

RCW 86: synchrotron X-ray emission 最も古いhistorical SNR (Rho et al. 2002)

30 Dor C: Super-bubble in LMC

4.2. 解析結果まとめ

	Cas A	Kepler	Tycho	SN1006	RCW86					
t_{acc}/t_{age}	0.088	0.42	0.26	0.34	1.16					
Age limited case										
E _{max} (TeV)	•••	16-31	4.8-18	22-69	41-172					
B _d (μG)	•••	10-150	32-52, 70-110	14-20	4-12					
θ (deg.)	•••	90	<10, 90	0-90	90					
Loss limited case										
E _{max} (TeV)	10-36	50-54	16-17	26-54	41-172					
B _d (μG)	139-305	72-85	82-99	23-85	4-12					
θ (deg.)	<60	90	<10	<35	90					

初めてのSNR磁場構造の見積もり ほとんどのSNRが ^{age-limited} 磁場は衝撃波面に垂直 ^{で説明可}

5.1. 議論(1): filamentの進化

年齢順にならべると…

上流より下流が早く進化

上流と下流の進化の速さの違い

6. まとめ

- 1. 超新星残骸6天体からシンクロトロンX線を検出
- 2. シンクロトロン放射の領域(filament)は非常に 狭い!
- 3. 狭い幅を説明するためには衝撃波面に垂直で乱 流状態の磁場が必要
- 4. 粒子は非常に狭い場所で効率よく加速される
- 5. 衝撃波面近傍では局所的にequipartition
- 6. Filamentの幅はSNRの加齢に従い大きくなる
- 7. $E_{max} \sim t_{age}^{3/5}$, $B_d \sim t_{age}^{-3/5}$ で進化
- 8. 超新星残骸の熱エネルギー・運動エネルギー・磁
 - 場エネルギー・加速粒子のエネルギーは

equipartitionのまま進化

7.1. 今後の(観測的)課題(1) 個々の詳細観測 ✓ASTRO-E IIによる高E分解観測 √加速・非加速領域の熱的プラズマの比較 加速効率の直接測定 √輝線幅の測定 衝撃波速度の測定 √衝撃波面の偏光観測 磁場方向・乱流度の直接測定 ✓硬X線·γ線での詳細観測 シンクロトロン vs. inverse Compton Non-linear effect? ✓Neutrino観測?

7.2.1. ASCAによる無バイアス銀河面探査

探査領域: |I| < 45º, |b| < 0.4º

複数の未同定宇宙線加速SNR候補を発見

Bamba et al. (2003b)

7.2.2. Chandra Newtonによる追観測

G28.6-0.1 (Bamba et al. 2001, Ueno et al. 2003)

G32.45+0.0 (Ueno et al. in prep)

電波で未発見の宇宙線加速SNR ~20個以上??? (Bamba et al. 2003b)

XでまだまだSNRは見つかります

