An approach to strong CP problem without axion

Institute for Cosmic Ray Research Theory Meeting,
“Early Universe and Physics Beyond the Standard Model”,
Dec. 8-9, 2008, @ ICRR, Kashiwa Campus of the University of Tokyo
Kenzo Inoue and Naoki Yamatsu,
Department of Physics, Kyushu University, Fukuoka, JAPAN.

TABLE OF CONTENTS
1. Introduction
2. Strong CP Problem
3. Summary

Introduction

Some accomplishments in $SU(1, 1)$ model

- **Spontaneous P-C-T Violation**
 - [K. Inoue and N. Y., PTP'08a]

- **Generations of Quarks and Leptons**
 - [K. Inoue, PTP'95]

- **Hierarchical Mass Structures**
 - [K. Inoue, PTP'95]
 - [K. Inoue and N. Y., PTP'08a]

- **SU(1, 1) Model**
 - Supersymmetric Vectorlike Model

- **μ–problem**
 - [K. Inoue and N. Y., PTP'08b]

- **Strong CP Problem**
 - [K. Inoue and N. Y., PTP'08b]

- **Dark Matter Candidate (without R-parity)**
 - [K. Inoue, PTP'95]
Introduction

General framework of SU(1,1) model

From Vector Model to Chiral Model

Supersymmetric Vectorlike Model
\((\text{ = SU}(1,1)\text{ Model}) \)

SU(1,1) Horizontal Symmetry

P-C-T invariance

\[\text{Supersymmetric Chiral Model} \quad (\text{ = the MSSM}) \]

SU(1,1) Horizontal Symmetry

P-C-T invariance

Spontaneous Generation of Generations

Quarks, Leptons and Higgses
(+ their conjugates)
SU(1,1) infinite-dimentional rep.

Vectorlike Quarks:
\[Q = \{ q_1, q_2, q_3, \ldots \} \]
\[\bar{Q} = \{ \bar{q}_1, \bar{q}_2, \bar{q}_3, \ldots \} \]

Nonvanishing VEV finite-dim. rep.

Three Generations of Quarks and Leptons
One Generation of Higgses

Chiral Quarks:
\[q_1, q_2, q_3 \]
Possible solutions to the strong CP problem and their conditions
\[\theta \equiv \theta_{\text{QCD}} + \theta_{\text{QFD}} (< 10^{-10}), \quad L_\theta = \theta (g_c^2 / 64 \pi^2) \epsilon_{\mu \nu \lambda \sigma} G^a_{\mu \nu} G^a_{\lambda \sigma} \]

\section*{Strong CP Problem}

\begin{itemize}
 \item \(\theta < 10^{-10} \): Naturalness Problem
\end{itemize}

- \textbf{Peccei-Quinn Mechanism}
 \begin{itemize}
 \item \(\theta = \text{dynamical valuable: axion} \)
 \item \(\theta = 0 : \text{minimum of vacuum energy} \)
 \item \textit{Anomalous U(1)}
 \end{itemize}

- \textbf{Spontaneous CP Violation}
 \begin{itemize}
 \item \(\theta_{\text{QCD}} = 0 : \text{CP (or T) invariance} \)
 \item \(\theta_{\text{QFD}} < \theta \): upper bound
 \item \textit{CP (or T) invariance}
 \end{itemize}

- \textbf{Massless Quark}
 \begin{itemize}
 \item \(\theta = \text{unphysical} \)
 \item \textit{Quark Chiral Rotation}
 \item \textit{Massless Quark}
 \end{itemize}

References:
- [R.D. Peccei and H.R. Quinn, PRL, PRD’77]
- [S. Weinberg, PRL’78; F. Wilczek, PRL’78]
- [R.N. Mohapatra and G. Senjanovic, PLB’78]
- [A. Nelson, PLB’84; S. Barr, PRL’84]
- [G.’t Hooft, Plenum’80]
- [G.’t Hooft, PRL’76, PRD’76]
- [C.G. Callan, R.F. Dashen, D.J. Gross, PLB’76]
How to solve the strong CP problem in $SU(1, 1)$ model (outline)

Assumption
- Vector symmetry is exactly maintained in the vectorlike model.

SU(1,1) Model (Supersymmetric Vectorlike Model)
- P-C-T Invariance
- $SU(1,1)$ Horizontal Symmetry

Spontaneous P-C-T Violation
- $\theta_{QCD} = 0$

Natural Hierarchy of Yukawa Coupling
- $\theta_{QFD} = 0$

A Solution to the Strong CP Problem
Strong CP Problem

Tree-level analysis

Superpotential relating to \(\theta_{QFD} \) in minimal \(SU(1,1) \) model

\[
W_{\text{Yukawa}} = \bar{U}QH + \bar{D}QH' + U\bar{Q}\bar{H} + D\bar{Q}\bar{H}'
\]

(Yukawa couplings) (“Mirror couplings”)

\[
W_{\text{Quark, Higgs}} = (Q\bar{Q} + \bar{U}U + \bar{D}D)\Psi^F + H\bar{H}\Psi + H'\bar{H}'\Psi'
\]

(Quark couplings) (Higgs couplings)

Tree level quark mass term \((i,j,k,\ell = 0, 1, 2, 3, \ldots; m,n = 0, 1, 2.\))

\[
\bar{Q}_U = \{\bar{u}_{\beta+m}|\bar{u}_{\beta+g+i}|\bar{q}_{-\alpha-j}\}, \quad Q_U = \{\bar{q}_{\alpha+n}|\bar{q}_{\alpha+g+k}|\bar{u}_{-\beta-i}\},
\]

\[
\mathcal{M}_U = \begin{pmatrix}
\frac{y^u_{mn}(\epsilon_x, \epsilon, \langle h \rangle)}{y^u_{i+g,n}(\epsilon_x, \epsilon, \langle h \rangle)} & \frac{y^u_{m,k+g}(\epsilon_x, \epsilon, \langle h \rangle)}{x^u_{i,\ell+g}(\langle \psi^F_{-g} \rangle)} & 0 \\
0 & \frac{y^u_{i+g,k+g}(\epsilon_x, \epsilon, \langle h \rangle)}{x^u_{j+g,k}(\langle \psi^F_{-g} \rangle)} & 0
\end{pmatrix}.
\]
Strong CP Problem

Naive evaluation

Quark mass determinants

\[\theta_{\text{naive}} = \arg \det[M_U M_D] = -g \phi_{PQ} + [\phi_{PQ}-\text{independent term}] \]

- **$SU(1,1)$ invariance requires**
 \[c = -(g - 1) - [SU(1,1) \text{ weight-dependent term}]. \]

- **$SU(1,1)$ breaking ($g \neq 0$) makes $U(1)_{PQ}$ anomalous symmetry.**
- Nambu-Goldstone boson becomes an axion.
- The axion solves strong CP problem.

However,

- **$U(1)_{PQ}$ symmetry should not suffer from any anomaly in vectorlike model.**
Strong CP Problem

Alternative evaluation

Principle
- \(U(1)_{PQ} \) symmetry is exactly maintained in vectorlike model.

Possible effects for \(\theta \)
- Quark mass matrix

\[
\mathcal{M}_U = \begin{pmatrix}
 y_{mn}^u (\epsilon_x, \epsilon, \langle h \rangle) & y_{m,k+q}^u (\epsilon_x, \epsilon, \langle h \rangle) & 0 \\
 y_{i+q,n}^u (\epsilon_x, \epsilon, \langle h \rangle) & y_{i+q,k+q}^u (\epsilon_x, \epsilon, \langle h \rangle) & x_{i,l+q}^u (\langle \psi_F \rangle) \\
 0 & x_{j+q,k}^u (\langle \psi_F \rangle) & 0
\end{pmatrix}.
\]

(1,2)-, (2,1)- and (2,2)-entries give undetermined effects for \(\theta : f(\epsilon_x, \epsilon, \langle h \rangle) \).

These infinite matrix components make \(U(1)_{PQ} \) symmetry exact.
Quark mass matrix determinant ($\theta = \arg \det [M_U M_D]$)

$$\theta_{\text{tree}} = (A + B + C + \cdots) \varphi_{PQ} + [\varphi_{PQ}\text{-independent term}].$$

Exact vector symmetry "$U(1)_{PQ}$" requires $(A + B + C + \cdots) = 0$.

Tree level analysis for single higgs sector

$$\theta_{\text{tree}} = c(- \arg[\epsilon_x \epsilon^3] - \arg[\epsilon_y \epsilon'^3] + 4 \arg[\langle \psi_0^{F'} \rangle] + \arg[x'u'd']) + \arg[f^\beta\alpha(\epsilon_x \epsilon^3)] + \arg[f^{\gamma\alpha}(\epsilon_y \epsilon'^3)] + \arg\det[Y_{u}^{mn}] + \arg\det[Y_{d}^{mn}].$$

Conditions for satisfying $\theta_{\text{tree}} = 0$ (mod. π):

$$\arg[\epsilon_x \epsilon^3] = \arg[\epsilon_y \epsilon'^3] = 0 \ (\text{mod. } \pi), \quad \arg[\langle \psi_0^{F'} \rangle] = 0 \ (\text{mod. } \pi/4).$$
Strong CP Problem

Radiative correction

\[\tilde{Q}_u = \{ \bar{u}_\beta | \bar{q}_{-\alpha} \}, \quad Q_u = \{ q_\alpha | u_{-\beta} \}, \]

\[\mathcal{M}_u = \left(\begin{array}{c|c} X^{ij} (\epsilon's, \langle h \rangle's) & \Psi_{i,\ell+g}^u (\langle \psi_{-g}^F \rangle, \langle hh' \rangle) \\ \hline \Psi_{j+g,k}^{\prime \prime} (\langle \psi_{-g}^F \rangle, \langle hh' \rangle) & \mathcal{M} (\epsilon's, \langle h \rangle's) \end{array} \right). \]

These effects for \(\theta \) from \(X \) and \(\tilde{M} \)

\[\theta \ni \varphi_{PQ} A, \quad B, \]

\[A = [a_0 + a_1 (m_{\text{SUSY}}/M)^2 + \cdots], \quad B = (m_{\text{SUSY}}/M)^2 [b_1 + b_2 (m_{\text{SUSY}}/M)^2 + \cdots]. \]

- \(A = 0 \) because of maintaining vector symmetry \(U(1)_{PQ} \)
- \(B = O(m_{\text{SUSY}}^2/M^2) \approx O(10^{-26}). \)

\[\Rightarrow \text{} O(1) \text{ effects are canceled for } \theta. \]
Consideration for this cancellation

- Exact vector symmetry $U(1)_{PQ}$ exists because of vectorlike Model.

 \Rightarrow The origin of this cancellation is the vectorlike feature of the model.

 \Rightarrow The vertex corrections of X and \tilde{M} with $\langle \Psi \rangle$'s will be also canceled.

$SU(1, 1)$ Model

- All radiative corrections for θ will be canceled when $\theta = 0$ is naturally realized at the tree level.
- We expect that θ-term do not receive radiative corrections when $\theta_{\text{tree}} = 0$

Vacuum structure (hypothesis)

- In a model with some discrete symmetry, the directions of the vacua from the origin will be determined by the tree level analysis.
Summary

$SU(1, 1)$ model is a supersymmetric vectorlike model

- This model has $SU(1, 1)$, P, C and T symmetries.
- Yukawa couplings are systematic structures.
- Vector symmetry is not anomalous in the vectorlike model.

\Rightarrow Simple conditions give $\theta_{\text{tree}} = 0$ at tree-level.

- Vacuum phase structure is determined by tree level analysis when some discrete symmetry exist.

\Rightarrow $\theta = 0$ at quantum-level when $\theta_{\text{tree}} = 0$ at tree-level.
Q.1 Why three chiral generations of Quarks and Leptons exist?
Q.2 Why mass hierarchies of Quarks and Leptons exist?

<table>
<thead>
<tr>
<th>Generation</th>
<th>Mass (GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>First</td>
<td>100</td>
</tr>
<tr>
<td>Second</td>
<td>10</td>
</tr>
<tr>
<td>Third</td>
<td>1</td>
</tr>
</tbody>
</table>

Natural coupling constant in Standard Model

[W. M. Yao et al., (PDG) '06]
SU(1,1) Symmetry

SU(1,1) is the simplest noncompact nonabelian group.

\[g_{\mu\nu} = \text{diag}(+1, -1) \] is invariant under the SU(1,1) transformation: \(U\eta U^\dagger = \eta. \)

(cf. SU(2) case: \(\eta_{\mu\nu} = \delta_{\mu\nu} = \text{diag}(+1, +1): UU^\dagger = \delta). \)

<table>
<thead>
<tr>
<th>symmetry</th>
<th>SU(1,1)</th>
<th>SU(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>transformation</td>
<td>(U = e^{i \sum_{i=1,2,3} \theta_i H_i})</td>
<td>(U = e^{i \sum_{i=1,2,3} \theta_i H_i})</td>
</tr>
<tr>
<td>generators (H_i (i = 1, 2, 3))</td>
<td>([H_1, H_2] = -iH_3) ([H_2, H_3] = +iH_1) ([H_3, H_1] = +iH_2)</td>
<td>([H_1, H_2] = +iH_3) ([H_2, H_3] = +iH_1) ([H_3, H_1] = +iH_2)</td>
</tr>
<tr>
<td>unitary representation</td>
<td>infinite-dimensional</td>
<td>finite-dimensional</td>
</tr>
<tr>
<td>nonunitary representation</td>
<td>finite-dimensional</td>
<td>infinite-dimensional</td>
</tr>
</tbody>
</table>

SU(1, 1) model

- Infinite-dim. rep. \(\Leftrightarrow \) the MSSM superfields
- Finite-dim. rep. \(\Leftrightarrow \) spontaneously breakdown of SU(1, 1)