2020 (令和二) 年度 共同利用研究・研究成果報告書

研究課題名	和文:KAGRA におけるレーザー強度安定化のためのR&D
	英文:R&D for the intensity stabilization of the laser system in KAGRA
研究代表者	富山大学学術研究部理学系 森脇喜紀
参加研究者	富山大学学術研究部理学系 山元一広
	同上 小林かおり
	東京大学宇宙線研究所 三尾典克
	富山大学理工学教育部 伊藤光希
	同上
	同上
	同上 森有紀乃
	同上中山遥太
	同上山下堪太
研究成里概更	
(1) レーザー(のビームジッターによ
る疑似強度	度ノイズ効果 10→ Wathematica
KAGRAIS 化システィ	こ導人済みの強度安定
と強度安定	こし, こ ニノンン (定化後のノイズに相関 5 ¹⁰⁻⁴ / / / / / / / / / / / / / / / / / / /
が見られる	
強度安定	
	取り出し,PZTアクチュ
PD面へ導	く。その光軸を僅かに 10 10 10 10 10 10 10 10 10 10 10 10 10
変調して の 位置 ち	¹ 2受光面上でのビーム - <u>1.5 -i.0 -0.5 0.0 0.5 1.0 1.5</u> #tum亦調L その亦調
に同調した	Xull愛調し、その愛調 図1 PD 受光面上でのピーム位置変調による PD 出たPD出力を位相敏感検 カの PD 受光面上でのビーム位置のの体存性 横軸
出した。図]11に、横軸にPD上での は PD 中心付近から相対位置。青線はモデル計算。
信号主力で	、阳刈的/12直, 縦軸に を示す。ここで、 PDはE
xcelitas	technologies社C30642GH(ϕ 2mm)であり、レーザーはPD表面に直径0.4mm
の大きさう ピークは	で集光されており、出力3.5mWで電圧変換後の出力IVである。±Imm付近の レーザービームの半分だけがPD受光面上にあり、光軸の僅かな変調によ
りPDでの	受光光量の変調が最大となるために生じると考えられ、モデル計算でほぼ
申規できる 擬似的なる	る。このようなヒームの裾がPD受光面から外れることによるPD受光光量の 変調は ビームがPDの中心部分に近づくにしたがって指数関数的に小さく
なること	がモデル計算で示される。一方で、図1に示すように実験ではPDの中心付
近でもピ-	ーク強度の3桁程度しか信号出力が小さくならない。これは、PD受光面の こ位置依存の不均一性があるためであると考えられる。このようなビーム
ジッター	こよる擬似的な強度ノイズが、強度ノイズの負帰還によりノイズを生じる
ため、強度	夏ノイズの上限によるビームジッターの上限について検討した。
(2) 04に向けた	とレーザー強度安定化システムの設計
ビーム? ビーム? 安定化ショ	ジッター等による擬似的強度揺らぎを防ぐため、ビーム位置制御系を強度 ステムに取り入れる。これまでのIMMチャンバーY-側の光学定盤トでけシ

ステムを組むことができないため、Y+側に光学台を新たに用意することを前提として、システムを設計した。以下その概要である。IMM真空槽内の光学系について

- は、SEOでの設計を依頼することとなった。
- (a) ビームジッターを取り除くための、QPDとピエゾアクチュエータ付き鏡マウン トを2セット使う。
- (b) 高出カレーザーに対応するため、最終的にはビームを4分割し4個のPDで検出する。
- (c) ビームスプリッター(BS)や鏡で不要な迷光となる反射・透過光をそれぞれ2次ま で光線追跡した。迷光のパワーを小さくするために、光学素子の裏面での透過 光反射率をできるだけ小さくすること、PD直前の鏡では表面の反射率を高める ことが重要である。
- (d) 04後に真空中へシステムを導入する場合には、IMMチャンバーY+側の真空ポートに新たな真空容器を接続し、その内部に Ø 800の光学定盤を用意する予定である。今回はこの光学定盤に組む光学系を前提として設計を行った。
- (e) 上記のためのPDボックス(真空容器)を設計した。側面に4個のPDを固定し、PD 出力はフィードスルーを介してPDボックス内の電流電圧変換およびフィルター アンプ回路に送られる。その出力はフィートスルーを経て、真空容器外に取り 出されサーボシステムへとつながる。

整理番号 G06