
# 低エネルギー太陽ニュートリノ 観測を目的としたインジウム・ リン半導体検出器の開発研究

平成23年度共同利用研究成果発表研究会 2011年12月17日

宮城教育大学 福田善之 東大宇宙線研 森山茂栄\*、関谷洋之 東大素粒子国際センター 難波俊雄 2011年度 採択額:4万円(旅費)

### Capture of low energy solar neutrinos by 115 In

#### R.S.Raghavan Phs.Rev.Lett37(1976)259

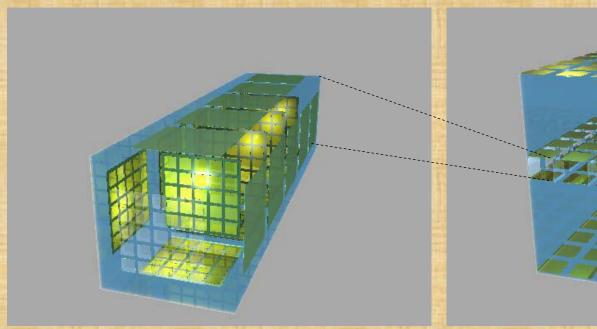


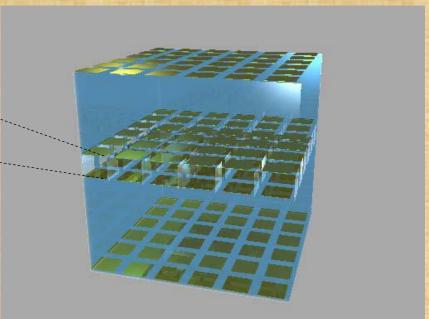
Nuclear Physics A 748 (2005) 333-347

$$^{115}$$
ln +  $\nu_{e} \rightarrow ^{115}$ Sn\* +  $e^{-}$ 
 $^{115}$ Sn\*(4.76 $\mu$ s)  $\rightarrow ^{115}$ Sn +  $\gamma_{1}$ (115keV) +  $\gamma_{2}$ (497keV)

#### Advantage

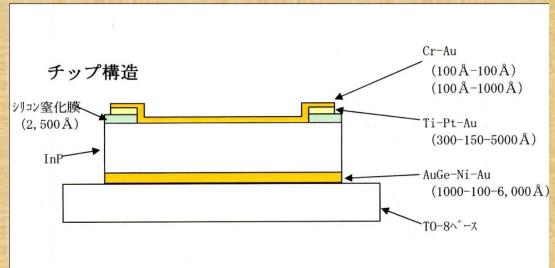
- large cross section (~640SNU)
- direct counting for solar neutrinos
- sensitive to low energy region (E<sub>v</sub> ≥ 125keV)
- energy measurement (E<sub>e</sub> = E<sub>v</sub> 125keV)
- triple fold coincidence to extract neutrino signal from huge BG ( $e_1 + \gamma_2 + \gamma_3$ )
- Disadvantage
  - natural  $\beta$ -decay of <sup>115</sup>In  $(\tau_{1/2} = 4.4 \times 10^{14} \, \text{yr}$ , Ee $\geq$ 498keV)
  - possible BG due to correlated coincidence by radiative Bremsstrahlung


#### Requirement for the detector


- 1. Good energy resolution: 10%(FWHM)
- 2. Fine segmentation  $(10^4-10^5)$
- 3. High efficiency  $\gamma$  detection

# IPNOS phase-I experiment for Solar v experiment

InP multi-pixel detector inside of Liquid Xenon.

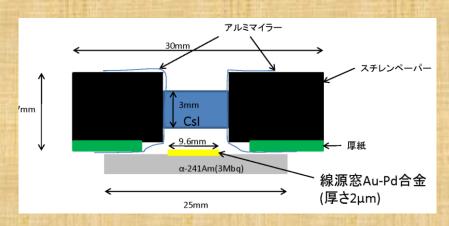

30cm cubic chamber (like XMASS 100kg prototype) includes ~10kg InP detector





### 液体キセノンのシンチレーション光も観測

### 薄膜電極型InP検出器の開発






- 液体キセノンのシンチレーション光の減衰を 抑える必要がある
- Au/Crの電極の厚みが100Å(VCZ型)と50Å (VB型)の検出器を開発

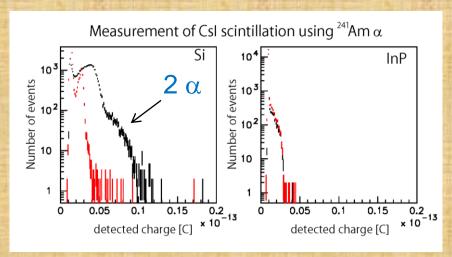
# 薄膜電極型InP検出器(VCZ)によるシンチレーション光測定

- CsIシンチレータ
- 241Amのα線による シンチレーション光22000photon/MeV





# <u>薄膜電極型InP検出器(VCZ)によるシンチ</u>レーション光測定(1)


### ■ Siダイオード

22000photon/MeV × 4MeV

×0.4 (立体角)×0.8(量子効率)

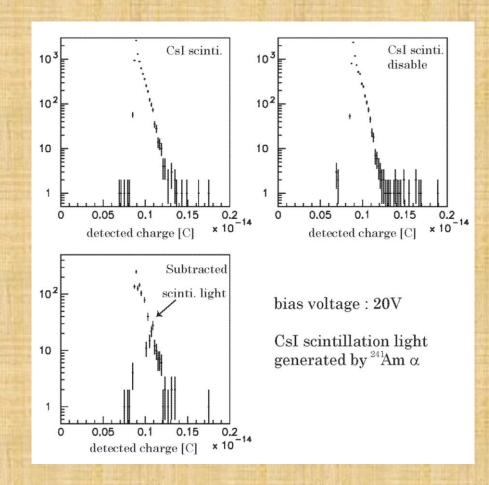
 $\times$  1.6x10<sup>-19</sup>C =4.5 fC

#### InP detector



22000photon/MeV×4MeV×0.25(立体角)×0.8(量子効率)

× 0.85(ガラスの透過率) × Auの透過率 × Crの透過率


 $\times 1.6 \times 10^{-19} \text{C}$ 

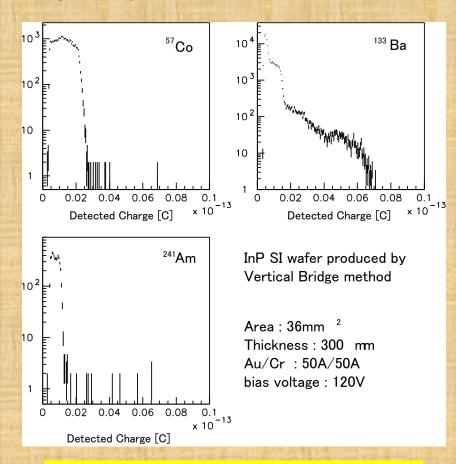
ノイズに隠れている

# <u>薄膜電極型InP検出器(VCZ)によるシンチ</u>レーション光測定(2)

- 予想電荷量: 0.5fC
- 暗電流によるノイズを抑えるため、バイアス電圧を300Vから20Vに低減

ノイズにより明確な信号 が見えなかった。50 Å 薄膜電極が必要(予想 電荷量1.0fC)

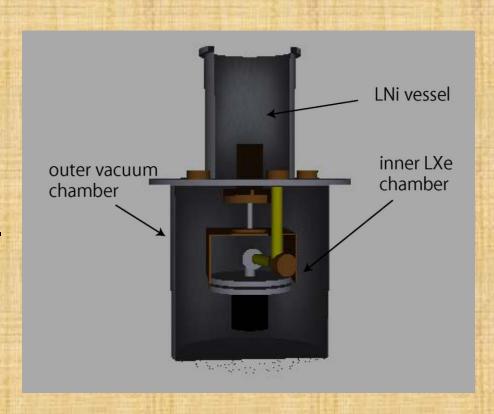



## 薄膜電極方InP検出器(VB)の性能評価

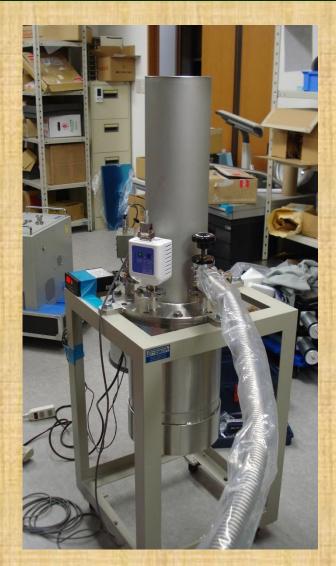
- Vertical Bridge法によるInP検出器(Au 50 Å/Cr 50 Å)
  - □比抵抗が大きい(4.5e7Ωcm → 6.4e7Ωcm )

暗電流が小さくなり、ノ イズが減少

□EPDが小さい (5000cm<sup>-2</sup> →1500cm<sup>-2</sup>)


ドリフト長が長くなり、 分解能が改善




120Vでもピークを観測 (分解能の改善)

# 液体キセノンによるシンチレーション光測 定用真空チェンバーの製作

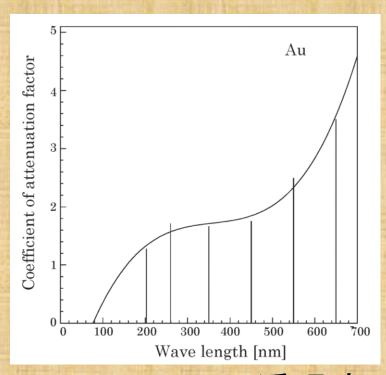
- 24ccの液体キセノン のシンチレーション
- 4台のInP検出器を 液体キセノンに浸け る(冷却とシンチレー ション光集光)
- 光電子増倍管による同時計測

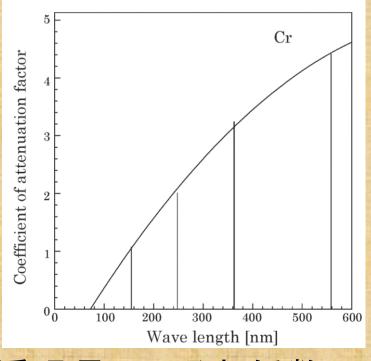


# 液体キセノンチェンバーの冷却試験









# 結果

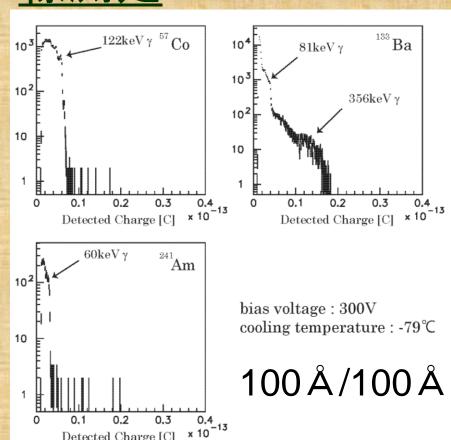
- 薄膜電極型InP検出器(VCZ)を開発 (Au 100 Å/Cr 100 Å)
  - ✓ ガンマ線による応答性は従来同様
  - ✓ 5.4MeVα線によるCsIシンチレーション光の明確な信号は観測されなかった ノイズ多い
  - ▼50Åの電極厚が必要
- 薄膜電極方InP検出器(VB)を試作(Au 50 Å/ Cr 50 Å)
  - 低バイアス電圧でも信号が確認
  - ✓ CsIシンチレーション光を観測可能なノイズレベル
- 液体キセノンのシンチレーション光観測実験 液体キセノンチェンバー製作・冷却試験中

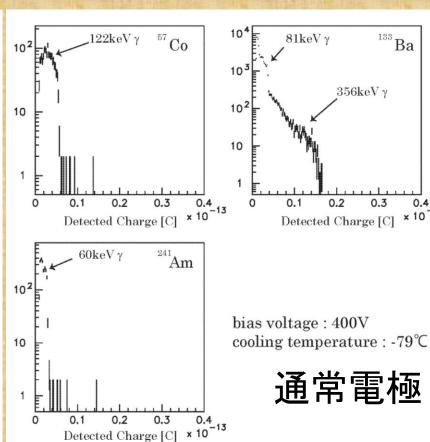
# BACKUP

## Au/Cr電極の透過率@550nm






 $\tau = \exp(-ax)$  t:透過率 x:透過長 a:吸収係数

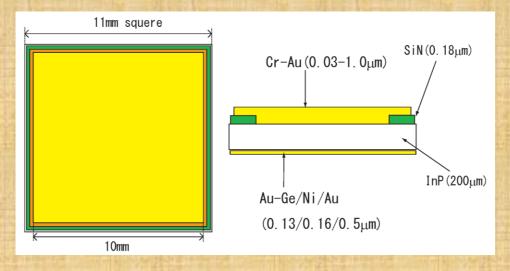

 $a = 4\pi k / \lambda$ 

 $100 \text{ Å}: \tau_{Au} = 0.57 \tau_{Cr} = 0.36$ 

 $50\text{ Å}: \tau_{Au}=0.75 \tau_{Cr}=0.6$ 

# 膜電極型InP検出器(VCZ)による放射






ガンマ線によるスペクトル測定では、従来の性能と変わらない

Detected Charge [C]

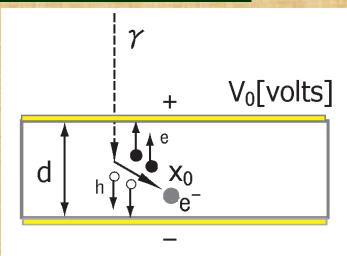
### 半絶緣性InP半導体検出器





真空容器にマウントされた検出器

- 住友電気工業製 VCZ法・ VB法による半絶縁性 InP 半導体基板
- 浜松ホトニクス制作
- ドライアイス冷却(-79°C)


#### Surface area:

 $6mm \times 6mm \times 0.3mm$ 

#### Electrode:

- Ohmic contact
- evaporated Au/Cr base metal
- Insulator (SiN) to avoid leak current
- thin Au/Cr 100 Å/100 Å 50 Å/50 Å

### 電荷収集の原理



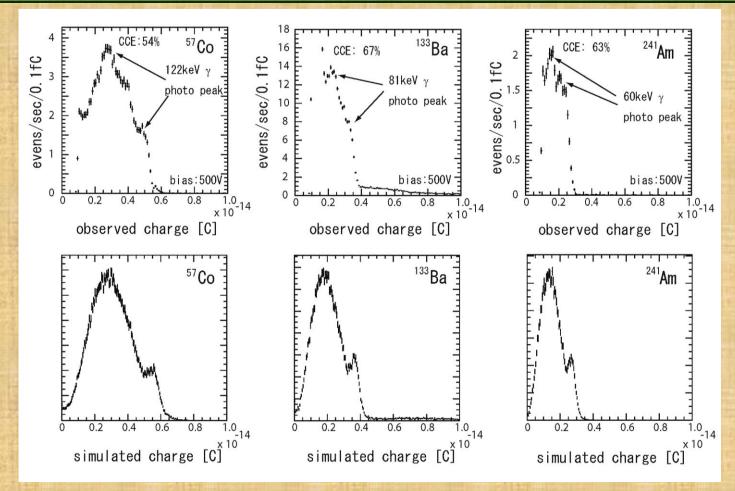
$$\mu$$
: mobility [m<sup>2</sup>v<sup>-1</sup>s<sup>-1</sup>]

v : carrier velocity [ms<sup>-1</sup>]

E: electric field [vm<sup>-1</sup>] d: thickness of SI InP

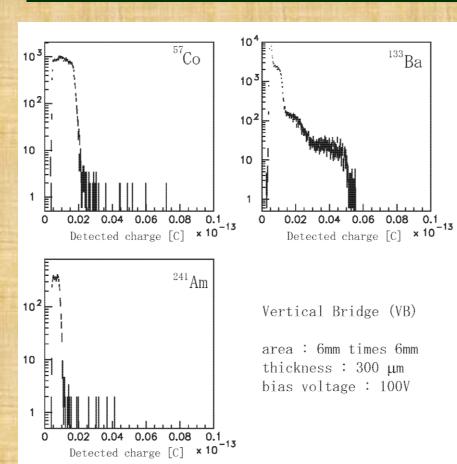
 $x_0$ : range of electron

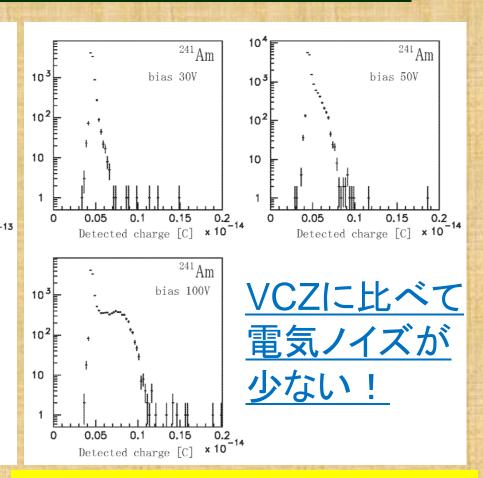
$$E=V_0/d$$
  $v=\mu E=\mu V_0/d$ 


 $\tau$ : carrier lifetime [s]

- drift length : L<sub>d</sub>= $\tau$ V= $\mu\tau$ V<sub>0</sub>/d
- 誘導電荷: dQ = qdx/d
- Hecht formula,

$$Q = Q_o \left\{ \! \left( \frac{L_e}{d} \right) \! \left( 1 - e^{-\frac{K}{L_e}} \right) + \left( \frac{L_h}{d} \right) \! \left( 1 - e^{-\frac{(d-\kappa)}{L_h}} \right) \! \right\}$$

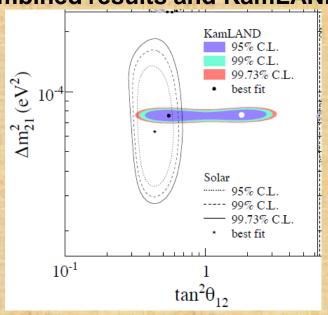

■ 全電荷収集 (Le+Lh~d) Q=Q<sub>0</sub>


### シミュレーションによるスペクトル形状の再現



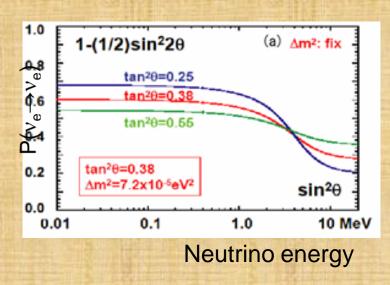
■ 電子のドリフト長L<sub>e</sub>~200µmとホールのドリフト長 L<sub>h</sub>~30µmを仮定すると、2ピーク構造がシミュレーションによる再現

### VB基板によるInP検出器の性能評価(2)





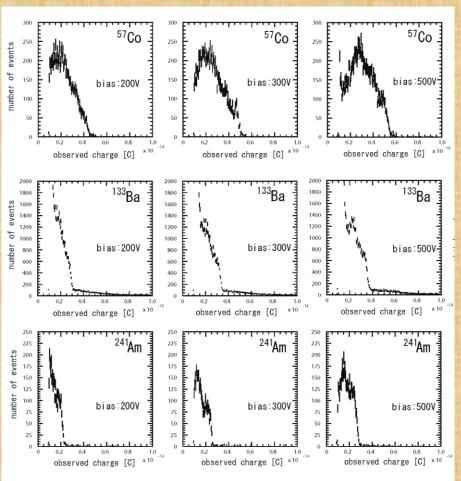

シンチレーション光の観測が 可能(かもしれない)


#### Motivation

# Allowed region obtained by combined results and KamLAND



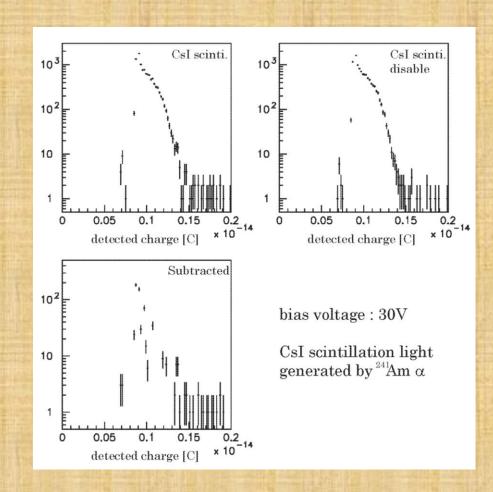
# Survival probability for solar matter oscillation below 1MeV


Y.Suzuki@Neutrino2004



- mixing angle  $\theta_{12}$  is not well determined compared with  $\theta_{23}$  obtained by Atm. v.
- Survival probability could increase at 5MeV or less in case of LMA solution, and the value of probability depends on  $\theta_{12}$ .

 $pp/^{7}Be$  solar neutrino spectrum gives us precise  $\theta_{12}$ 


### InP 検出器によるガンマ線スペクトル観測



- 光電ピークを観測しているが、2ピーク構造となっている
- Low Q peak: キャリアがド リフトすることによる誘導 電荷
- High Q peak: 全電荷収集
- 電子・ホールの平均生成 エネルギー: 3.5eV
- エネルギー分解能: 25%@122keV (intrinsic resolution: 3%)

### 薄膜電極型InP検出器によるシンチレーション 光測定(3)

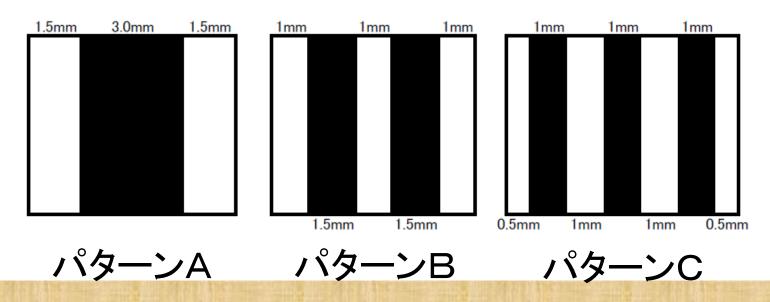
- 予想電荷量: 0.5fC
- 暗電流によるノイズを抑えるため、バイアス電圧を300Vから30Vに低減



# メッシュ電極型InP検出器の開発



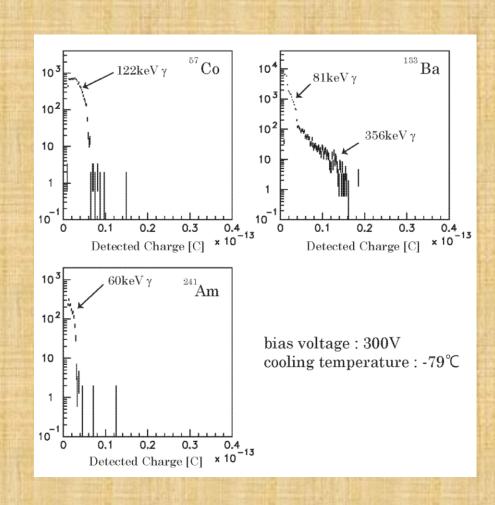
- 電極の厚み Au100 Å / Cr100 Å
- 表面電極の極性は 共通
- 基板の厚み 200μm/300μm


## メッシュ電極型InP検出器の設計

面積: 6mm×6mm

厚さ: O. 2mm 、O. 3mm 電極(表): Cr 100 Å Au 100 Å

電極(裏): AnGe 1000 Å Ni 100 Å Au 6000 Å

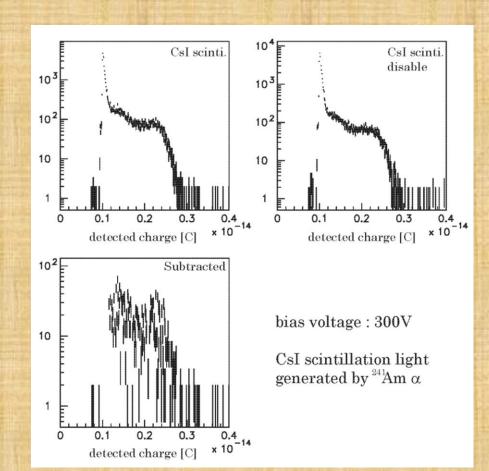

メッシュ電極パターン 開口率 50%



### メッシュ電極型(C) InP検出器による放射線測定

- ガンマ線によるスペクトル測定では、形状は従来の性能と変わらない。
- 観測事象数がおよ そ半分程度に減少

開口部分に電場が 無いため、不感領域 になっている可能性




# メッシュ電極型(C) InP検出器によるシンチレーション光測定

■直接入射光により 2.5fC程度の電荷収 集が予想



60keVγ線事象と区別がつかず、明確な信号が観測されない(表面電極の効果は不明)

