Origin and Propagation of High Energy Cosmic Rays by Direct Observations

Shoji Torii
Research Institute of Science and Engineering
Waseda University
Energy Spectrum

- Covers more than 20 orders of magnitude
- Flux varies by more than 30 orders of magnitude
- Required detector size varies greatly over this range
 - Satellites limited to low energy (< 100 GeV)
 - Balloons can approach the “knee” (~ 1 PeV)
 - Air shower measurements for highest energy
- Most detailed measurements are at low energy
- Little composition knowledge above 1 PeV
Composition measurements cover the full element range

- Relative abundances range over 11 orders of magnitude
- Detailed composition limited to less than ~ 10 GeV/nucleon
Origin and Acceleration of Cosmic Rays: A Standard Scenario

- **Origin**
 - FIP (hot gas) or Volatility (dust · grain)

- **Acceleration by Supernova Shock Wave (Fermi Acceleration)**

 \[Q(E) = \frac{dI}{dE} \propto E^{-\alpha} \quad \alpha = \frac{3}{R-1} + 1 \quad R = \frac{\rho_2}{\rho_1} \leq 4 \Rightarrow \alpha \geq 2 \]

- **Maximum Energy**

 \[E_{max} \sim 100 \ Z \ TeV \]

 oblique shock, diffusive shock, multiple shocks, different SN types…
Propagation of Galactic Cosmic Rays: Leaky Box Model

Leaky Box Model for Protons & Nucleus

$$\frac{N_i(E)}{\tau_i(E)} = \frac{Q_i(E)}{\tau_i(E)} - \left(\frac{\beta c \rho}{\lambda_i} + \frac{1}{\gamma \tau_i} \right) N_i(E) + \frac{\beta c \rho}{m} \sum_{k \neq i} \sigma_{i,k} N_k(E)$$

1 ry component

$$\frac{N_P}{\tau_e} = \frac{Q_P(E)}{\tau_e} - \frac{\beta c \rho}{\lambda_P} N_P \Rightarrow N_P = \frac{Q_P \tau_e}{1 + \frac{\beta c \rho \tau_e}{\lambda_P}} = \frac{Q_P \tau_e}{1 + \frac{\lambda_e}{\lambda_P}}$$

Protons \(\frac{\lambda_i}{\lambda_P} \ll 1 \Rightarrow N_p \approx Q_p \tau_e \propto E^{-\alpha - \delta} \)

Heavy Nuclei \(\lambda_c \approx \lambda_P \Rightarrow N_p \sim E^{-\alpha - \delta + \epsilon}, \epsilon \leq \delta \) (harder than protons)

2 ry component

$$\frac{N_s}{N_p} = \frac{\sigma_{P \rightarrow S}}{\sigma_P} \frac{\lambda_e}{\lambda_P} \frac{1 + \frac{\lambda_e}{\lambda_S}}{1 + \frac{\lambda_c}{\lambda_S}} \frac{1}{\tau_e / (\gamma \tau_S)}$$

$$\Rightarrow \frac{N_s}{N_p} \propto E^{-\delta}, \frac{\lambda_e}{\lambda_S} \ll 1 \) (Light Nuclei)
Propagation of Electrons

- Diffusion Equation

\[
\frac{dN}{dt} = D \nabla^2 N + \frac{\partial}{\partial E} \left\{ b(E) N(E) \right\} + Q(E)
\]

However, since high energy electrons can not propagate so far from the source due to the energy loss (~\(E^2\)), the density is not uniform.

⇒ Leaky Box is not a good model at higher energies.

Effects of Nearby Sources bring:
- Structure in energy spectrum
- Anisotropy of arrival direction
Electrons can provide additional information about the GCR source

- High energy electrons have a high energy loss rate $\propto E^2$
 - Lifetime of $\sim 10^5$ years for >1 TeV electrons
- Transport of GCR through interstellar space is a diffusive process
 - Implies that source of high energy electrons are < 1 kpc away

- Electrons are accelerated in SNR
- Only a handful of SNR meet the lifetime & distance criteria

Proton & Nucleus Observation before 2000

“Supernova remnant paradigm”

- Cosmic Rays are accelerated by Fermi acceleration at SNR shocks

- Power laws of the type $E^{-\gamma}$ are usually assumed to be generated naturally, with slope around $\gamma = 2$

- The spectra observed at the Earth are modified by diffusive propagation in the Galaxy

Due to poor statistics, it is difficult to know details of energy spectra of each component over 10 TeV/nucleus.

Need More Observation with Large Scale and Long Duration for accurate measurement of the spectra and abundances of elements in cosmic rays
New Technology and Long Duration Ballooning for Precise Measurements

70 days of flight from 2 launches

- CREAM
- ATIC
- Tracer
- TIGER
- BESS-Polar
- PPB-BETS

CREAM-I
12/16/04 - 1/27/05
Record breaking 42 days

CREAM-II
12/16/05-1/13/06
28 days

Launch
Landing

2007.8.28 ICRR/CRC Symposium Kashiwa 9
Cosmic ray balloon payloads (1)

CREAM
- Cosmic Ray Energetics and Mass (CREAM)
- GCR nuclei from H to Fe for energies from ~1 TeV to ~500 TeV
- 1141 kg (2526 lbs)
- Flights in 2004 and 2005 (70 days)
- Anticipated flights in 2007 and 2008

ATIC
- Advanced Thin Ionization Calorimeter (ATIC)
- GCR nuclei from H to Fe from 50 GeV to ~100 TeV; GCR electrons from ~20 GeV to several TeV
- 1636 kg (3600 lbs)
- Flights in 2000, 2002 (30 days), launch failure in 2005
- Anticipate flight in 2007
Cosmic ray balloon payloads(2)

Transition Radiation Array for Cosmic Energetic Radiation (TRACER)
- Direct measurements of O to Fe from ~50 GeV to several 100 TeV; 5 m² sr
- 1614 kg (3550 lbs)
- Flights in 2003, 2006 (14 days)
- Proposing for more flights

Trans-Iron Galactic Element Recorder (TIGER)
- GCR nuclei heavier than iron (26 < Z < 40) for energies ranging from 0.3 to ~100 GeV/nucleon
- 700 kg (1543 lbs)
- Flights in 2001 and 2003 (50 days)
- Unrecovered after 2003 flight
Cosmic ray balloon payloads(3)

Anti-Electron Sub-Orbital Payload / Low Energy Electronics (AESOP/LEE)

- Study solar modulation of electrons up to 20 GeV; resolve positrons and negatrons up to 6 GV
- 934 kg (2060 lbs)
- Flights in 97, 98, 99, 00 (120 hours)
- Still operational

BESS

Balloon Experiment Superconducting Spectrometer (BESS)

- Anti-protons and isotopes of light nuclei from 0.18 to 4.20 GeV; search for anti-deuterium, anti-helium
- 2,070 kg (4400 lbs)
- 9 “ConUS” Flights 1993 – 2002; LDB flight in 2004 (8.5 days)
- Anticipate flight in 2007
PPB-BETS for Electron Observation

- Direct measurements of Electrons
 ~10 GeV to 1000 GeV
- 600 cm2sr
- ~500 kg
- Flights in 2004 (13 days)
- Detector was not recovered
CREAM Instrument

A key feature of the instrument:
Simultaneous measurements of the energy and charge of a subset of nuclei by the complementary calorimeter and TRD techniques, thereby allowing in-flight inter-calibration of their energy scales.

Timing-Based Charge Detector
- Identify incoming particle
- Penn State U

Transition Radiation Detector
- Measure velocity for Z ≥ 3
- U of Chicago

Tungsten-SCN Calorimeter
- Measure energy for Z ≥ 1
- U of Maryland
Approaching the “knee”

- The proton spectrum follows a power law with little change up to ~ 100 TeV.
- The He spectrum seems harder than the proton spectrum.
 - If this continues, the “knee” composition could be dominated by He
 - He/p ratio is about a factor of 2 higher at ~10TeV/n than 10-100 GeV/n
- Future flights will extend the CREAM energy reach to higher energies and distinguish hadronic interaction models such as QGSJET and SIBYLL used for ground based data.
C & O spectra from CREAM

- CREAM results span ~ 4 decades in energy: ~ 10 GeV to ~ 100 TeV
- Spectra were obtained by 3 independent groups, UC, INFN & UMD
- TCD/CD/TRD results are consistent with SCD/CAL results
- CREAM-I & II SCD/CAL results are consistent
- C & O spectral shape/fluxes agree with previous measurements
ATIC Instrument

Total weight:
$\sim 1,500$ kg (3,300 lbs),

Total power consumed:
< 350 Watts (including power conversion efficiency)

Balloon Altitute:
~ 36 km

Geometrical factor:
0.45 m2 sr (calorimeter top) ~ 0.24 m2 sr (calorimeter bottom).
Preliminary ATIC-2 Results
TRACER Instrument

The whole detector is mounted inside a 2.5 x 2.5 x 3 m³ aluminum structure without a surrounding pressurized shell.

Detector:
- Two layers of plastic scintillators (2 x 2 m²),
- One Cerenkov counter (2 x 2 m²)
- Transition radiation detector system which determines the Lorentz factor.
- Oxygen to iron in 10^{13} to several 10^{14} eV per nucleus
- 60 m² sr days for 12 days flight
- Altitude 37.5 km
B/C Ratio and Matter Traversed

CREAM B/C Ratio

![Graph showing B/C ratio versus energy](image)

Propagation Pathlength Λ

\[
\frac{1}{\Lambda} = \frac{1}{\Lambda_{esc}(E)} + \frac{1}{\Lambda_{int}(Z)}
\]

- ISM interaction lengths Λ_{int}
- Escape Path Length Λ_{esc}
- Residual Path Length $\Lambda_{R} = 0.1$
TRACER Results

The TRACER results, extending to about 10^{14} eV per particle, represent the highest energy cosmic-ray data currently available with single element resolution.

The data can be described by a simple propagation model with

- $\delta : \ 0.6$ energy dependent path length
- $\alpha : \ 2.3$ power law source index
- $\Lambda_0 : 0.1 \text{ g/cm}^2$ residual path length

The TRACER data indicate a common origin and mode of propagation for all species. They are consistent with predictions of commonly accepted shock acceleration models.

The relative source abundances of cosmic rays confirm the anti-correlation with the first ionization potential, or volatility at high energy.
TIGER Instrument

- Experiment Weight: ~1050kg
- Balloon Altitude: > 35.5 km
- Measurement of the elemental abundances of nuclei with $26 < Z < 40$
- Energy measurement in 0.3-10 GeV/n.
TIGER Results

Volatility or FIP Fractionation or ??

Top-of-atmosphere abundances

- ^{31}Ga agrees with SS+FIP.
- ^{32}Ge agrees with SS+Volatility.
- The disagreement suggests that the source abundances are not SS.
- TIGER results for Ga and Ge are consistent with HEAO-C2.
BESS-Polar Spectrometer with Minimizing Material in Detectors

Minimize material & New detector (Middle TOF)

Energy range extended down to 0.1 GeV

Low power electronics
Solar Power System, Longer Cryogen Life

Long duration flight in Antarctica
Antiproton Spectra with BESS

- BESS Polar I, 2004, before Solar-minimum,
- Results updated.

Re-acceleration model and S.L. model
more consistent with BESS-Polar -I (before solar minimum)
Upgrade for BESS-Polar-II

to realize 20 days observation in Solar Minimum

<table>
<thead>
<tr>
<th>Subject</th>
<th>(BESS-Polar I)</th>
<th>(BESS-Polar II)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnet Cryogen Life</td>
<td>~ 11 days</td>
<td>> 22 days</td>
</tr>
<tr>
<td>Track detector (JET) gas quality</td>
<td>~ 10 days</td>
<td>> 22 days</td>
</tr>
<tr>
<td>TOF-PMT housing</td>
<td>Resin potting</td>
<td>Pressurized housing</td>
</tr>
<tr>
<td>ACC Particle ID</td>
<td>Rejection ~ 630</td>
<td>>> 1000</td>
</tr>
<tr>
<td>Solar-power gen.</td>
<td>4 stage 900 W</td>
<td>3 stage 675 W</td>
</tr>
<tr>
<td>Effective Acceptance</td>
<td>0.2 m²sr</td>
<td>0.3 m²sr</td>
</tr>
<tr>
<td>Observation time</td>
<td>8.5 days</td>
<td>> 20 days</td>
</tr>
<tr>
<td>Statistics</td>
<td>4 x BESS97</td>
<td>20 x BESS97</td>
</tr>
<tr>
<td>Data storage</td>
<td>2 of 3.6 TB</td>
<td>12 ~ 16 TB</td>
</tr>
</tbody>
</table>
PPB-BETS Detector
“Imaging Calorimeter”

Imaging of cascade shower:
- Electron selection
- Energy measurement
- Angular measurement
Calibration at Accelerator Beam @ CERN-SPS

50 GeV electron

150 GeV proton

200 GeV electron

350 GeV proton
BETS Results

Energy spectrum of electrons in the energy range of 100GeV to ~1TeV

Ratio of observation to isotropic distribution along Galactic longitude

Possible bump at 300 – 800 GeV seen by both ATIC and PPB-BETS may be a source signature?

Diffusion length during the loss time:
\[4D(E)T_{\text{loss}}^{1/2} = 1 - 2 \text{ kpc} \]

(Expected anisotropy by a model: ~1% >200GeV)
Super-pressure Balloons:
A New Capability for Advanced Observations

Super-Pressure : Ultra Long Duration Balloon (ULDB) “Pumpkin”

Zero-Pressure Balloon
Prospect of SPB development

- 300,000 m3 SPB in fabrication
 - Balloon weight \sim 1,200 kg
 - Suspend 450 kg @ 37 km (Payload \sim 350 kg)
 - Technical flight within 2007 at Brazil
- Brazil—Australia flight (\sim 10 days), planned in 2008
- World-around (\sim 1 month), hopefully in 2010
- Telemetry by INMARSAT BGAN (492 kbps max. IP packet)
Ultra-Heavy Cosmic Ray Observation Program for High Energy Nuclear Astrophysics

N. Hasebe et al. Waseda University

- **Solid-State Track Detector (SSTD)**
 - ◎ CR-39 plastic detector (performances already tested)
 - ◎ BP-1 glass detector (Now under development)

- **Advantage of SSTD**
 - Large collecting power (> a few m²)
 - High mass and charge resolutions
 - Low cost & Easy to handle the detector
 - Not sensitive for X-ray, γ-ray, β-ray and light nuclei

![Image of CR-39 plastic detector]

![Image of SSTD pattern]

![Graph of expected number of events vs. nuclear charge]

![Graph of abundance relative to 10^16 Ni vs. atomic number]

- ISS (4 m², 3 year)
- Antarctic balloon (4 m², 100 days)
- Southern hemisphere balloon (16 m², 100 days)
- HEAO-3/C3

2007.8.28 ICRR/CRC Symposium Kashiwa
MeV γ Observation for Nuclear Emission

T. Tanimori et al. Kyoto University

Discovery of SNR

<table>
<thead>
<tr>
<th>Element</th>
<th>Energy [keV]</th>
<th>Decay</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{56}Ni</td>
<td>158,270,480,759,812</td>
<td>6.10d</td>
</tr>
<tr>
<td>^{56}Co</td>
<td>847,1238,2598</td>
<td>77.2d</td>
</tr>
<tr>
<td>^{57}Co</td>
<td>122,136</td>
<td>271.7d</td>
</tr>
<tr>
<td>^{44}Ti</td>
<td>1157</td>
<td>63yr</td>
</tr>
<tr>
<td>^{26}Al</td>
<td>1809</td>
<td>7.4×10^5 yr</td>
</tr>
</tbody>
</table>

COMPTEL ^{26}Al map

Oberlack et al., 1997

COMPTEL ^{44}Ti map

Iyudin et al., 1998

Aschenbach et al., 1998

ROSSAT X-ray

etc...

2007.8.28 ICRR/CRC Symposium Kashiwa
SMILE Instrument

- Photo Absorption
- Compton
- Pair Creation

Energy range:
- keV: 10^3 eV to 10^4
- MeV: 10^5 to 10^6
- GeV: 10^7 to 10^8
- TeV: 10^9 to 10^12

- As a detector, SMILE uses Gaseous TPC and Scintillation camera.
- The system can track and measure the energy of recoil electrons and the position and energy of scattered γ-rays.
- 1 photon → direction + energy
- No collimator → Large FOV (~3str)
- Kinematical background rejection → High detection sensitivity

- Reconstruct Compton scattering event by event

SMILE Instrument Sensitivity

- Sensitivity ranges from 10^{-9} erg cm^2/s to 10^{-16}

- Our Goal: All sky survey

New techniques for observing MeV region!
Electron Observation by ULDB
S. Torii et al. Waseda University

Observation of electron energy spectrum up to a few TeV
Cut-off of energy spectrum and/or Enhancement
We need space experiments for:

- Very high-statistics observation for define modeling of acceleration and propagation
- Very high-energy observation for resolving the origin of Knee
- Observation free from atmospheric effects
- Search for exotic origins as Dark Matter

Present and Expected Missions for Cosmic Ray Observation

- **PAMELA**: Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics
- **AMS02**: Alpha Magnetic Spectrometer
- **CALET**: Calorimetric Electron Telescope
PAMELA nominal capabilities

<table>
<thead>
<tr>
<th>Energy Range</th>
<th>Particles in 3 Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antiproton flux 80 MeV - 190 GeV</td>
<td>$\sim 10^4$</td>
</tr>
<tr>
<td>Positron flux 50 MeV – 270 GeV</td>
<td>$\sim 10^5$</td>
</tr>
<tr>
<td>Electron flux up to 400 GeV</td>
<td>$\sim 10^6$</td>
</tr>
<tr>
<td>Proton flux up to 700 GeV</td>
<td>$\sim 10^8$</td>
</tr>
<tr>
<td>Electron/positron flux up to 2 TeV (from calorimeter)</td>
<td></td>
</tr>
<tr>
<td>Light Nuclei up to 200 GeV/n He/Be/C:</td>
<td>$\sim 10^{7/4/5}$</td>
</tr>
<tr>
<td>AntiNuclei search sensitivity of 3×10^{-8} in He/He</td>
<td></td>
</tr>
</tbody>
</table>

→ Simultaneous measurement of many cosmic-ray species
→ New energy range
→ Unprecedented statistics

Taking into account live time and geometrical factor:
1 HEAT-PBAR flight ~ 22.4 days PAMELA data
1 CAPRICE98 flight ~ 3.9 days PAMELA data
PAMELA science

- Search for antimatter
- Search for dark matter
- Study of cosmic-ray propagation
- Study solar physics and solar modulation
- Study of electron spectrum (local sources?)
- Study terrestrial magnetosphere
PAMELA apparatus

GF: 21.5 cm² sr
Mass: 470 kg
Size: 130x70x70 cm³
Power Budget: 360W
Positrons

Experimental scenario until 90s

Charge-dependent solar modulation

Atmospheric correction (balloon-borne experiments)

...?...

Difficult interpretation due to large uncertainties in propagation models
Positrons

PAMELA expectation in 3 years

- Solar modulation

Primary sources?
- Dark matter
- Astrophysical sources
- CR electron propagation

Secondary production
@ solar minimum
Diffusion-convection model
(Lionetto, Morselli & Zdravkovic 2005)

Unexplored Region

E^2 positron flux (particle / m^2 sr s GeV))
Antiprotons

PAMELA expectation in 3 years

Secondary production
@ solar minimum
Diffusion-convection model
(Lionetto, Morselli & Zdravkovic 2005)

Primary sources?
• Dark matter
• Primordial black holes
• Solar modulation

Unexplored Region

Primary sources?
• Dark matter
• Extragalactic primordial p-par
A plausible dark matter candidate is neutralino (χ), the lightest SUSY particle.

Annihilation of relic χ, gravitationally confined in the galactic halo

→ Distortion of antiproton and positron spectra from purely secondary production

Most likely processes:
- $\chi\chi \rightarrow qq \rightarrow$ hadrons \rightarrow anti-p, e^+, ...
- $\chi\chi \rightarrow W^+W^-, Z^0Z^0, \ldots \rightarrow e^+, \ldots$
 - direct decay \Rightarrow positron peak $E_{e^+} = M_{\chi}/2$
 - other processed \Rightarrow positron continuum $E_{e^+} = M_{\chi}/20$
Secondary-to-primary ratio

Cosmic-ray propagation parameters often tuned on B/C data
AMS-02 Spectrometer

- Acceptance for charged CR: 0.5 m^2sr
- Exposure: at least 3 years (from 2008)
- Charge: Z determination up to Z = 26, charge confusion < 10^{-7} @ Z=1 & < 10% @ Z>10
- Rigidity (R = p/Z): \(\sigma(R)/R = 1.5\% @ 10\text{ GV}, \) Max Detectable Rigidity > 2-3 TV
- Velocity (\(\beta \)): TOF: \(\sigma(\beta)/\beta = 3.5\% \) (protons) RICH: \(\sigma(\beta)/\beta = 0.1\% \) (protons)
Expected data statistics for AMS on ISS

<table>
<thead>
<tr>
<th>Above</th>
<th>> 1 GeV/c</th>
<th>> 5 GeV/c</th>
<th>>10 GeV/c</th>
<th>>100 GeV</th>
<th>> 1 TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protons</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrons</td>
<td>1.4 x 10^8</td>
<td>7.3 x 10^7</td>
<td>6.1 x 10^9</td>
<td>1.5 x 10^8</td>
<td>2.5 x 10^6</td>
</tr>
<tr>
<td>Positrons</td>
<td>9 x 10^6</td>
<td>3.8 x 10^6</td>
<td>3 x 10^5</td>
<td>1.6 x 10^3</td>
<td>6</td>
</tr>
<tr>
<td>Antiprotons</td>
<td>1.5 x 10^6</td>
<td>1.1 x 10^6</td>
<td>1.4 x 10^4</td>
<td>3.2 x 10^3</td>
<td>5.8 x 10^2</td>
</tr>
<tr>
<td>Helium</td>
<td>6.4 x 10^8</td>
<td>4.3 x 10^8</td>
<td>2.1 x 10^8</td>
<td>7.3 x 10^6</td>
<td>1.7 x 10^5</td>
</tr>
</tbody>
</table>
AMS-02 goals and capabilities

Cosmic rays spectra and chemical composition up to 1 TeV

Search for Antimatter in Space

Search for Dark Matter

AMS will identify and measure the fluxes for:

• \(p \) for \(E < 1 \) TeV with unprecedented precision
• \(e^+ \) for \(E < 300 \) GeV and \(e^- \) for \(E < 1 \) TeV (unprecedented precision)
• Light Isotopes for \(E < 10 \) GeV/n
• Individual elements up to \(Z = 26 \) for \(E < 1 \) TeV/n

Absolute fluxes and spectrum shapes of protons and helium are important for calculation of atmospheric neutrino fluxes
Combining searches in different channels could give (much) higher sensitivity to SUSY DM signals.

- **Positrons**
- **Antiprotons**
- **Gamma rays**
- **Anti deuterons**

AMS Unique Feature
CALET: CALorimetric Electron Telescope

CALET Mission Concept

- **Instrument:**
 High Energy Electron and Gamma-Ray Telescope Consisted of
 - Imaging Calorimeter (IMC)
 - Total Absorption Calorimeter (TASC)

- **Launch:**
 HTV: H-IIA Transfer Vehicle

- **Attach Point on the ISS:**
 Exposed Facility of Japanese Experiment Module (JEM-EF)

- **Nominal Orbit:**
 407 km, 51.6° inclination

- **Life Time:**
 3(Minimum)-5 years

- **Mission Status**
 Phase A/B Study
 Launch around 2013 in Plan

CALET Payload:
- 1GeV ~ 10 TeV for electrons
- 20 MeV ~ several TeV for gamma-rays
 + Gamma-ray bursts in 7 keV~20 MeV
- several 10GeV ~ 1000 TeV for p & nuclei
- Weight: 2000 kg
- Geometrical Factor: ~0.7 m²sr
- Power Consumption: 640 W
- Data Rate: 300 kbps
Schematic Structure of the CALET Payload
Examples of Simulation Events

- e 1TeV
- proton 3TeV
- gamma 300GeV
- 2 layer Si array (10cm x 10cm unit)

- IMC
- W + SciFi

- 4 r.l, 0.14 mfp

- TASC
- 2.5cm x 2.5cm BGO
- 12 layers
- 27 r.l, 1.4 mfp
Purposes of Electron Observation

- Detection of Nearby Sources
- Electron Propagation in Our Galaxy
- Acceleration by Supernova Shock Wave
- Solar Modulation

Expected Observation with CALET by 1000 m^2 sr day

- Vela
 - 10,000 years
 - 820 ly
- Cygnus Loop
 - 20,000 years
 - 2,500 ly
- Monogem
 - 86,000 years
 - 1,000 ly

\[
W = 10^{48} \text{ erg/SN} \\
I(E) = I_0 E^{-\alpha} \\
N = 1/30 \text{yr} \\
D = D_0 (E/\text{TeV})^{0.3}
\]
Origin and Propagation of Proton and Nucleus

- Supernova Shock Acceleration
 Change of power spectrum index depending on Z?

- Propagation in the Galaxy
 Leaky box model?

Measurements of proton and heavy ion flux in the energy region exceeding 1 TeV, in which magnet spectrometer is not capable.

For proton measurement:
$S \Omega_{\text{eff}} \sim 0.2 \text{ m}^2 \text{ sr} \ (\text{for p})$

Exposure factor for 3 years:
$220 \text{ m}^2 \text{ sr day} \sim 1.9 \times 10^7 \text{ m}^2 \text{ sr sec}$

Expected numbers of protons:

<table>
<thead>
<tr>
<th>Energy (TeV)</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\sim 10^6$</td>
</tr>
<tr>
<td>10</td>
<td>2.3×10^4</td>
</tr>
<tr>
<td>100</td>
<td>4.1×10^2</td>
</tr>
<tr>
<td>1000</td>
<td>~ 10</td>
</tr>
</tbody>
</table>

Energy Resolution: $\sim 30\%$, $E > 100 \text{ GeV}$
Dark Matter Search by Positrons (& Electrons)

Positron will be measured by
- PAMELA flying
- AMS to be launched on ISS
- CALET on ISS (can not separate e+ and e-)

Simulation for 300 GeV KK DM

![Graph showing positron energy spectrum](image)

Direct decay to $e^+ e^-$

SUSY Dark Matter Search by Gamma-ray Line

- 690 GeV neutralino annihilating to $\gamma \gamma$
- Clumpy halo as realized in N-body simulation of Moore et al. (ApJL 1999)

- WIMP Mass Limit from Direct Observation
 - WIMP mass is likely heavier than 100 GeV
 - Future accelerator experiments will cover the mass range in 100~1000 GeV
 - Indirect observation is very promising to see gamma-ray line according to WIMP mass.

- Energy Resolution $\sim 1.2\%$

Simulated Signal in CALET for 3 years
SUMMARY

- **Very impressive improvements** in the quality of the measurements has be brought by the LDB flights since 2000.

- **Much more progress within a few years** is expected to realize a precise measurement for acceleration and propagation model; B/C ratio, spectral index of p ~Fe, UH particles ... , also in collaboration with X-ray and gamma-ray observations.

- **Measurements in the electron spectrum** might tell us about nearby sources or more likely put limits on diffusion.

- **The ULDB flights by super pressure balloons** will make possible the observations for ~100 days to cover the Knee region and to distinguish the models in origin, acceleration and propagation.

- **New era of astroparticle physics** should arrive in next decade by the crucial observations in space of various kinds of cosmic rays and the possible detection of dark matter.

Most Exciting Period of Cosmic-Ray Science !!!