Observational Cosmology Group

Masami Ouchi
Associate Professor
ICRR, The University of Tokyo

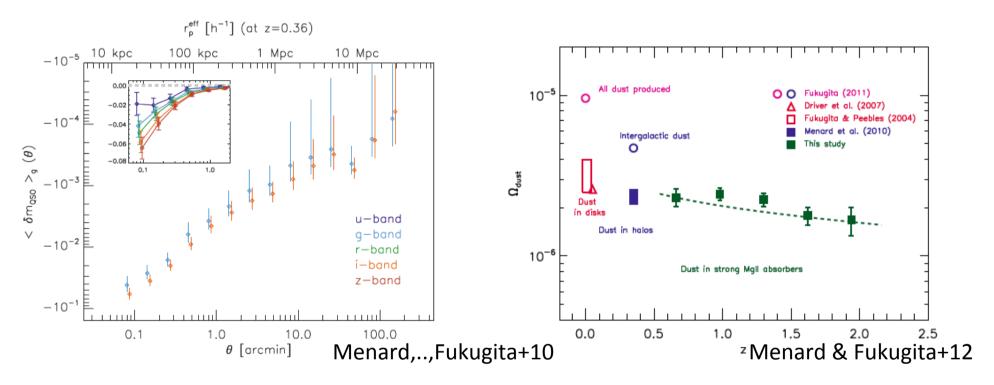
Outline

- 1) Science goals
- 2) Instruments and status
- 3) Scientific results
- 4) Size of Group, manpower, and budget
- 5) Relation with other universities/community
- 6) Education and mentoring young scientists
- 7) Future prospect

Goals and Projects

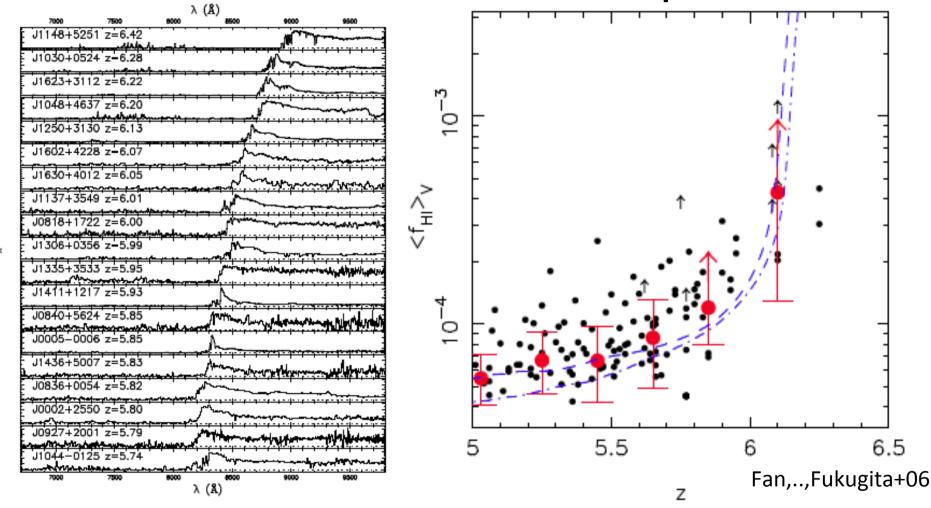
- Understanding the origin and evolution of the universe including
 - Energy density distribution,
 - Expansion history,
 - Structure/Galaxy formation, and
 - Cosmic reionization

Instruments and Status

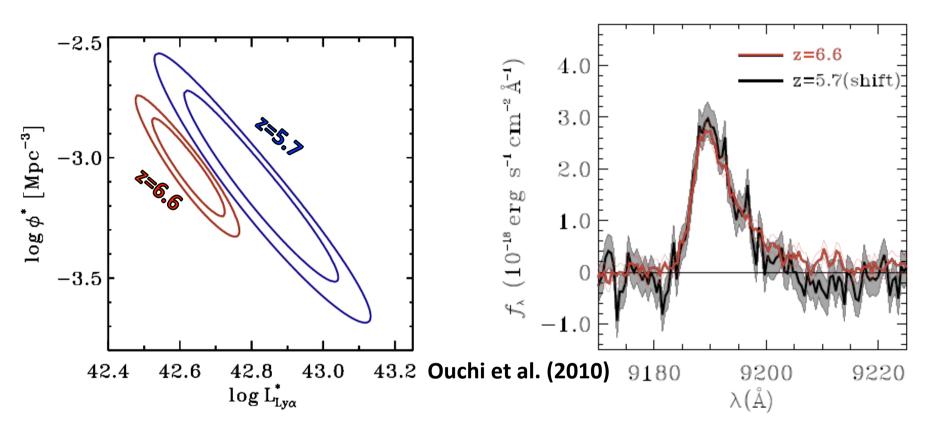

- Projects
 - 1. Sloan Digital Sky Survey (SDSS)
 - Instrumentation untill ~2000.
 - Survey observations completed in 2008.
 - Analysis and paper preparation up to 2012
 - 2. Subaru Hyper Suprime-Cam (HSC)
 - +complementary/preparatory observations w HST/ALMA
 - ICRR started HSC-NB since 2010 (arrival of M. Ouchi)
 - HSC instrument first-light (2012)
 - HSC survey planned to start from FY 2013

Scientific Resutls (Refereed Papers)

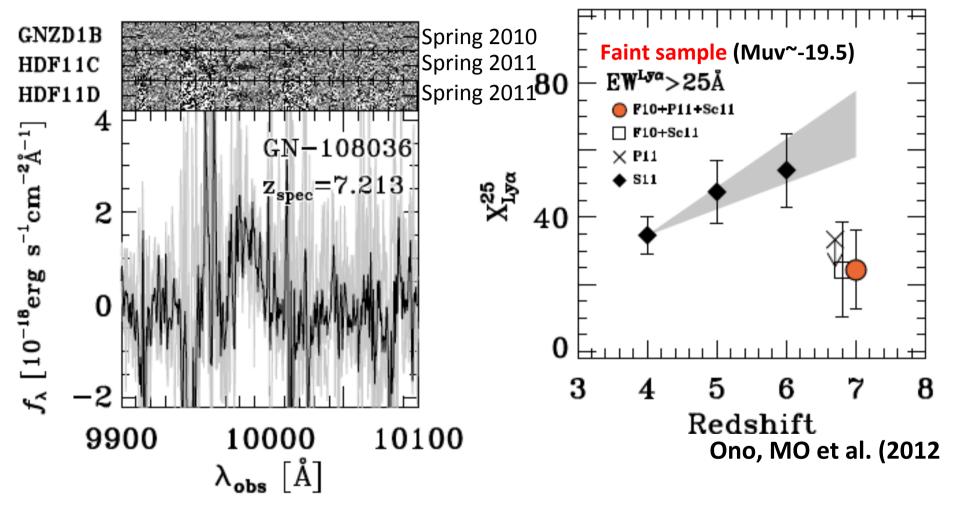
- The project papers
 - A total of 66 refereed papers
 - A total of 8622 citations
- ICRR-led papers
 - SDSS 8 papers, 234 citations (2006-2012)
 - HSC 4 papers, 237 citations (2010-2012)
 - SDSS: Fukugita et al. 2007, "
 A Catalog of Morphologically Classified Galaxies from the Sloan Digital Sky Survey: North Equatorial Region" (64 citations)
 - HSC: Ouchi et al. 2010, "Statistics of 207 Lyα Emitters at a Redshift Near 7: Constraints on Reionization and Galaxy Formation Models" (114 citations)


Citation counts as of Jan 2013

Highlights of Scientific Results (1) First Identification of 'Cosmic' Dust


- Missing baryon problem: all the stars, gas, and dust within galaxies constitute at most 40% of the baryons predicted by the Big Bang. Where are the rest? → Baryon energy density dist?
- Statistics of QSO brightness (m) as a function of galaxy angular distance (θ). Color dependence → Dust in halo+IGM (Menard,..,Fukugita+10)
- Energy density of dust: Ω_{dust} ~5x10⁻⁶ $_{\circ}$. About twice large as those in galactic disks.

Highlights of Scientific Results (2) Cosmic Reionization Completion


- SDSS QSOs \rightarrow Lya optical depth(τ) of IGM (HI indicator)
- Rapid change of τ at $z^{\sim}6 \rightarrow$ completion of reionization

Highlights of Scientific Results (3) Cosmic Reionization Completion

- First precise measurement (incl. cosmic variance errors; cf. Malhotra&Rhoads+04, Kashikawa+06) of Lya luminosity function at z~6. Definitive identification of Lya luminosity decrease (90% CL) from z~5.7 to 6.6 that is likely made by IGM HI damping wing abs. (Ouchi et al. 2010). Moderately early cosmic reionization.
- xHI $^{\circ}$ 0.2±0.2 at z=6.6. large statistical error \rightarrow next generation HSC survey with a size larger by x 30

Highlights of Scientific Results (4) Cosmic Reionization Completion

- Identification of z^7 galaxies including the most distant z=7.213 galaxy.
- The fraction of Lya emitting galaxies is low, ~20% → Signature of reionization? The amplitude of drop is larger in faint galaxies than in bright galaxies → suggestive of inside-out reionization (Ono, MO et al. 2011).

Size of Group, Manpower, and Budget

Faculty

- Masataka Fukugita, Professor, 1996 to 2012
- Naoki Yasuda, Assoc. Professor, 2003 to 2009
- Masami Ouchi, Assoc. Professor, 2010 to the present
- Yoshiaki Ono, Research Associate, 2012 to the present

Postdoctoral Fellows

- Rieko Momose, 2012 to the present
- Suraphong Yuma, 2012 to the present

Budget and Machine time

- SDSS
 - Grants-in-Aid for Scientific Research (A) for 2003-2006
- HSC

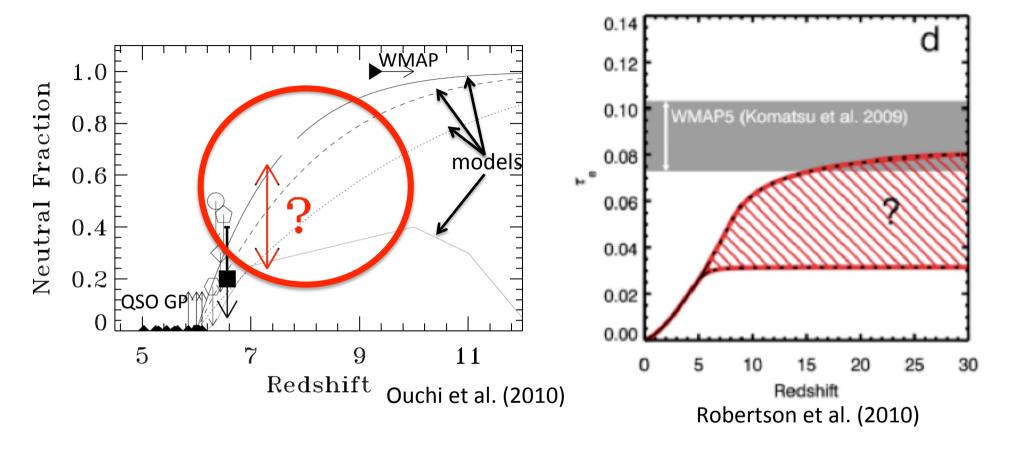
The basic design and tests for HSC narrow-band

- Grants-in-Aid for Scientific Research (A) (Ouchi et al. 2011-2014) for
- Grants-in-Aid for Scientific Research (start-up: Ono 2012-2014)
- Machine time (2010-2012)
 - Subaru: 14 nights (PI Ouchi)
 - Hubble Space Telescope:
 - Cycle 18: 18 orbits (PI Ouchi),
 - Cycle 19: 128 orbits (PI Ellis in collaboration)
 - Cycle 20: 16 orbits (PI Ono),
 - ALMA:
 - Cycle 0: 5 hours (PI Ouchi),
 - Cycle 1: 4+6 hours (PI Ouchi), 5 hours (PI Momose)
 - Keck: 5 nights (PI Ouchi) + VLT/Magellan etc.

Relation with other universities/community

- SDSS
 - Large international collaboration (US, Japan, German)
- Subaru Hyper Suprime-Cam (HSC) program
 - HSC survey consortium (Opt-NIR society in Japan, Princeton, Taiwanese institutes)
 - Narrow-band development w K. Shimasaku et al. from Tokyo, NAOJ, Ehime, Osaka-sangyo, Tsukuba etc.
 - ALMA Collaborations with NAOJ/Tokyo researchers (e.g. Nakanishi, K. Kohno). Accepting post-docs from ALMA community (e.g. R. Momose)

Education and mentoring young scientists


- A master and Ph.D degree for one student under N. Yasuda (-2009)
- No more students were accepted. No post-docs.
- Resuming education activities after the arrival of Ouchi
 - 2 students (2012) + 2 more students (2013)
 - from Physics/Astronomy departments
 - Spring school in 2012
 - In ICRR, one of the most popular research group for which students apply.
- Resuming accepting post-docs
 - 2 post-docs (2012) + 1-2 post-docs (2013)
 - The 2 post-docs (2012) have submitted new papers in the past few months. One out of 2 won a JSPS fellowship.
- Young post-docs and students are gathering. $(0 \rightarrow 5 \text{ in } 2012)$
- Strong demands on this study subject from young people.

Future prospects

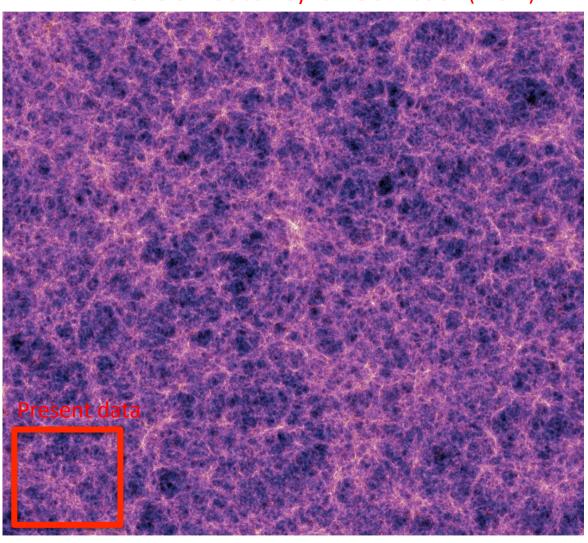
- HSC survey from FY 2013 (2013-2017)
- Synergistic observations with Hubble, ALMA etc.

- Preparation activities for 2020s programs
 - Subaru Prime Focus Spectrograph (PFS; ~2018-)
 - Thirty Meter Telescope; Infrared Imaging
 Spectrograph (IRIS; ~2020) TBA

Addressing Three Major Questions of Early Universe

- 1. Uncovering the cosmic reionization history (determination of reionization scenario)
- 2. Missing ionizing photons: Inconsistency of ionizing photon budget and τ
- 3. First-generation galaxy formation strongly related to cosmic reionization
- →interesting coincidence with the one of the priority sciences selected by US decadal survey Astro2010 (2012-2021)

Hyper Suprime-Cam Survey (2013-2017)



Hyper Suprime- HSC NB filter(test piece: Cam(HSC; 2012-) 2012 Mar.)
PFU

- Developing HSC narrow-band filters in ICRR
- HSC survey plans to be conducted in 2013-2017

Size of HSC survey for reionization (z^{-6-7})

Summary

Science goals

- Origin/Evolution of the universe (Ω , galaxy formation, and reionization etc.)

Instruments and status

SDSS (-2012). HSC+related studies (2010-)

Scientific results

66 refereed papers, 12 out of which are led by ICRR

Size of Group, manpower, and budget

2 faculty and 2 post-doc (2012-). JSPS grant, Subaru/HST/ALMA time

Relation with other universities/community

Belonging to large international collaborations, SDSS and HSC survey.

Education and mentoring young scientists

- Education activities resumed in 2011 \rightarrow 2 students, 2 PDs (more in 2013)

Future prospect

Addressing 3 questions of early universe with HSC etc.