Calibration of XMASS 800kg detector using neutron source

Moriyama’s office, ICRR,
M2 D.Umemoto
Contents

• Physics motivation
• How to
• data acquisition
• Energy and calibration
• Data selection method(cut criteria)
• Monte Carlo Simulation(MC) condition
• Comparison between MC & real data
• Conclusion
Direct dark matter (DM) particle search

- XMASS is a new particle search experiment
 - using nuclear recoil caused by weak interaction

What is the requirement for “direct” detection?

- scintillation light caused by nuclear recoil
 - how can the “light” judged that it is caused by nuclear recoil?
 - by finding same feature caused by some other nuclear recoil phenomena from signal.
 - how can nuclear recoil occurred?
 - using neutron!
physics motivation 2

• Once the signal was acquired
 – physical values of DM (crosssection, mass) must be measured

• how?
 – using MC.
 – fitting MC Energy histogram to that of real data.
 – fit parameters will give physical values

• aim in this research
 – judging MC availability
 – deviation(30%) is the aim in this research.
 – why 30%? non zero value even in 3σ is essential
data acquisition

• Used 252Cf for neutron source
• Used 57Co for gamma calibration source
• Cf source intensity was specified
 – with error of ~ 10 %
• hose run
• geometry
 – installed in MC
Energy and calibration 1

- examples of summed up waveforms from PMT

- after pulse

- bright event (background gamma event?)

- neutron event

- multiple nuclear recoil

- dark neutron event (multiple nuclear recoil)
Energy and calibration 2

- examples of summed up waveforms from PMT
Energy and calibration 3

• how to solve energy
 – integrating PMT summed up waveform

• integration criteria
 – executing peak search to solve pulse start point
 – integrating for 110 ns both in MC & real
Energy and calibration 4

- **light yield (LY)**
 - definition: \(LY = \frac{nPE}{\text{Energy}} \sim 15 \, \text{PE/keV} \)
 - \(nPE \): number of photoelectron (unit: PE)

- **57Co has a 122keV gamma peak calibration**
 - same calibration was done on MC as well
Data selection method 1
(cut criteria)

• trigger ID cut
 – muon veto (outer detector trigger event rejection)

• Nhit PMT cut
 – dark signal rejection (1, 2 or 3 hit during 200ns rej.)

• dT cut
 – after pulse rejection
 – dT<400us: reject, dT>400us: alive
Data selection method 2

- example: effect on dT cut

Before cut:
- Number of pulses: high
- Pulse start and end visible
- waveform: complex

After cut:
- Number of pulses: low
- Pulse start and end disappear
- waveform: simple

Example of pulse start/end on neutron data (real) before and after the cut.
Monte Carlo simulation (MC) condition

• MC condition must be very similar to real data
 – cut condition, BG treatment, source intensity, etc.

• cut condition
 – muon, dark signal, after pulse are not simulated:
 – same cut condition as real

• gamma BG
 – subtracted normal (w/o radio source) from neutron data.

• source intensity
 – checked by experiment with error less than 10%
Comparison between MC & real 1

- real data (BG subtraction)

![Real neutron energy spectrum graph]

- neutron run (with BG)
- pure neutron (equivalent)
- BG
Comparison between MC & real 2

- comparison in several energy range
Comparison between MC & real 3

• similar tendency in energy<100keV region.
• discrepancy is seen in higher energy region
• lower energy region (2-8 keV area)
 – good agreement in intensity and resolution.
• about discrepancy
 – total event rate
 • real: 25 count/sec
 • MC: 9 count/sec
 – reason is under investigation
 • source intensity 10% error, Xe crosssection 20% error, etc.
 those parameter cannot explain discrepancy of 2.5 times.
Conclusion

• assuming MC is correctly simulating real
 – cross section
 • watch 5 or 6 keV bin
 • 15% discrepancy
 • cross section $\sigma \propto$ intensity
 • 15% systematic error on σ
 • error < 30%
 – mass
 • watch gradient in 3-10keV region
 • almost no obvious difference
Thank you for listening.