Highlights from MAGIC observations

Ievgen Vovk on behalf of MAGIC collaboration

Max Planck Institute for Physics,
Munich, Germany

ICRR seminar
Tokyo, Japan, 09.04.2019
Main VHE instruments

H.E.S.S.

VERITAS

MAGIC

HAWC
Main VHE instruments

H.E.S.S.

VERITAS

CTA – the future

MAGIC

HAWC

MAGIC highlights
Main VHE instruments

- H.E.S.S.
- VERITAS
- CTA – the future
- MAGIC
- HAWC
MAGIC telescope system

Stereoscopic system of 2 IACTs, located at La Palma, Spain

Telescopes: two D=17m
Site: La Palma (Canary Islands)
Energy range: 40 GeV – above 50 TeV
Resolution: 0.07°-0.14° (0.1-1 TeV)
Sensitivity: 0.6% Crab units (integral)
Field of view: 3.5 deg

Recent improvements:
- at lower energies: new trigger system (SumTrigger-II);
- at higher energies: new observational strategy (Very Large Zenith angles).
Galactic sources
Galactic PeVatrons

Sources of the galactic cosmic rays are not known. But there are already first identifications of cosmic ray accelerators.

Supernovae remnants were found accelerating (low-energy) protons

Main argument: spectrum at low energies

Cosmic ray acceleration up to PeV energies in the Galactic Center

Main argument: morphology of emission

Fermi-LAT collaboration '13

H.E.S.S. collaboration '16

Ie. Vovk

MAGIC highlights
Are supernovae remnants PeVatrons?

Cas A – young (~400 years old) and well-studied SNR. Young SNRs were expected to be able to provide PeV cosmic rays.

Analysis of the deep MAGIC observations suggests the γ-ray emission is mostly hadronic. But reveals a high-energy cut-off at ~0.01 PeV.

Challenging the assumption that young SNRs are PeVatrons
Recently the interest to the Galactic Center has increased with the discovery of a potential PeVatron there, likely associated with the SMBH.

If confirmed, this provides an important milestone to the
1) identification of the galactic pevatrons
2) investigation of the CR propagation in the Galaxy

Alternative explanations proposed (Gaggero+ ‘17) underline the importance of the large scale CR “sea” for the firm interpretation.

However, one of the main ingredients is the gas distribution in the central ~200 pc from the black hole.

And it is particularly difficult to get.
Recent MAGIC re-observations also indicate a similar $w \sim 1/r$ CR profile, confirming H.E.S.S. results.

Still, the poorly known gas (target material) distribution close to the Galactic Center questions the $w \sim 1/r$ form – other indices are also possible.

More accurate radio measurements are needed to support γ-ray data.
Detection of the >100 TeV emission

> 100 TeV emission – a signature of a PeVatron.
Main obstacle – low expected count rates.

To keep observation time short, $A_{\text{eff}} > 1$ km2 is required.

Case for CTA, but also achievable with current generation IACTs through a special observational setup.

Large zenith angle observations

Expected counts for $A_{\text{eff}} = 1$ km2 and $T_{\text{obs}} = 50$ hr
Larger zenith angle observations

Vertical observations
(typical observational mode of IACTs)

- Usually $ZA \sim [0^0; 60^0]$ and shower distance $d \sim 10-20$ km

Large zenith angle observations
(proposed setup)

- $ZA > 70^0$
- Shower distance $d > 50$ km

- $d \sim 10$ km
- $r \sim 120$ m

- $d \sim 100$ km
- $r \sim 1200$ m

$d \sim 10$ km /$\cos(ZA)$

Ie. Vovk

MAGIC highlights
Crab Nebula detection at highest energies

Approximately 50 hr of exposure (after cuts) in ZA range 70-80°.

Angular event distribution
> 30 TeV estimated energy

Reconstructed collection area

LZA MAGIC collection area @100 TeV is comparable to CTA predictions (at 20° zenith angle).

Lowering the energy threshold: detecting pulsars with MAGIC

Pulsars (rotating neutron stars) typically have cut-off spectra, quenching at too low energies.

Only 2 pulsars are detected with IACTs until recently!

Vela pulsar
H.E.S.S. Collaboration (2018)

Crab pulsar spectrum
MAGIC Collaboration (2016)
Lowering the energy threshold: detecting pulsars with MAGIC

New **SumTrigger-II system**: stacking PMT signals. Yields a ~30 GeV energy threshold.

More efficient pulsar observations.

Crab Pulsar Phaseogram (30-200 GeV)

- P2: 13.66 σ
- P1: 9.81 σ
- P1+P2: 15.84 σ
- ST data ~53 h

Standard trigger 1.4 $\%_{\text{vh}}$

Sum-trigger-II 2.3 $\%_{\text{vh}}$

Adapted from J. R. Garcia, 2017
Lowering the energy threshold: detecting pulsars with MAGIC

A new MAGIC detected pulsar: Geminga

- ~30 h of Sum-Trigger-II observations, winter 2017
- Rotational parameters derived from 10 years of Fermi/LAT data
- Clear detection of P2 (5.2σ)
- No detection of P1

IACT-observed pulsar family is growing.
Extragalactic sources
Gravitational (micro)lensing

Gravitational lensing – bending of the light due to the gravity of the intervening galaxy.

Gravitational microlensing – bending of the light due to the gravity of the stars and small-scale structures in the intervening galaxy.

Image deformation / flux magnification

Short-time scale flux magnification of small (!) objects only
The lens and the source are moving with respect to each other at $v \sim 1000$ km/s, leading to a constant change in magnification.

Magnification amplitude and duration depends on the source size:

$$\mu_{\text{micro}} \sim (R_E/R)^{0.5}$$

$$\Delta t = R/v$$

$$\mu \approx 10 \left(\frac{R}{3 \times 10^{14} \text{ cm}} \right)^{-0.5}$$

$$\Delta t \approx 100 \left(\frac{R}{3 \times 10^{14} \text{ cm}} \right) \left(\frac{v}{300 \text{ km/s}} \right)^{-1} \text{ days}$$
Regular observations of *microlensing* opens a new way to learn about the nature of AGNs:

- ✔ energy dependence of R_γ
- ✔ its variations with time
- ✔ gamma vs radio location estimates

This gives a completely unique opportunity to study the details of the structure of the acceleration sites in AGNs, effectively improving the angular resolution of gamma-ray telescopes by 10^{11} times.

...AGN emission region angular size is that of an ant at the Moon.

Neronov, Vovk, Malyshev ‘15
B0218+358: a bright lensed AGN

Redshift $z=0.94$ – very distant source (Universe’s middle-age). Microlensing is observed at GeV energies, MAGIC data at ~ 100 GeV may be also indicative of a magnification phenomenon.

Flaring period 1

Flaring period 2

Very compact emission source, likely close to the central supermassive black hole.
AGN emission region problem

Emission scenario:
close to central engine
 OR
outside the so-called
Broad Line Region?

Close to central engine: fast variability most naturally explained, but BLR should absorb the VHE photons.

Outside BLR: where do the seed photons for inverse Compton scattering come from? How to produce the small emission region?

Cartoon of the possible locations of the emitting region
In 2015 MAGIC has observed another record-breaking source (z=0.94) PKS 1441+25 in a campaign with other telescopes.

Delivers unique measurements of Extragalactic Background Light from the middle-age Universe.

Modelling suggests the emission region is outside of BLR (otherwise a strong absorption occurs).

Distant emission region in some sources (absorption constraints)

Nearby emission region in other sources (microlensing detection)

Seems there is no common location

MAGIC Collaboration + (2017)
MAGIC detection of the neutrino source

TXS 0506+056 observations triggered by the IceCube alert EHE-170922A

TXS 0506+056 shows a synchrotron peak around 10^{14} Hz → classified as LBL/IBL

VHE gamma-ray observations allowed computation of redshift upper limits with between $z=0.61$ and $z=0.98$ at 95% CL (depending on EBL model used, Paiano+ ’18)

VHE emission (MAGIC)

IceCube+Fermi/LAT+MAGIC+…, Science, (2018)
MAGIC observations of the neutrino source

Deep (40 hr) exposure following the original event

- Two flares
- Daily time scale variability
- No spectral changes

Conclusions (overall):

✔ AGNs are responsible at least for a fraction of the observed astrophysical neutrino flux.
✔ AGNs do accelerate CRs to 10^{14}-10^{18} eV.
Intergalactic Magnetic Field

Physics beyond the Standard Model

Suitable conditions: Early Universe.

Cosmological IGMF may originate from different epochs:

✓ QCD phase transitions: $\sim 10^{-12}$ G
✓ electroweak phase transitions: 10^{-11} G
✓ recombination: $\sim 10^{-9}$ G

Detection of a cosmological IGMF may allow to learn about the conditions well before the recombination

Currently there is no other way to do this
Intergalactic Magnetic Field

“Smoking gun”: extended halo
Size and shape depend on IGMF strength and source parameters (jet opening and orientation).

Delayed emission
The delay is set by IGMF, but light curve shape may also depend on the jet parameters.

New spectral components
Depend on IGMF, source spectrum, jet orientation.

Recent MAGIC observations strongly constrain the IGMF parameter space

Ongoing debate on the role of plasma instabilities (Chang+ ‘12, Broderick+ ‘12, Miniati & Elyiv ‘12, Schlickeizer+ ‘12, ...)

Adapted from Durrer & Neronov ‘13

MAGIC Collaboration (in prep.)
MAGIC now lives its golden age:
- advances in hardware / analysis,
 - new sources discovered,
 - synergies with other wavelengths / domains.

A number of prominent discoveries were not covered here due to lack of time:
- GRB detection with an IACT
 - sharp spectral features in AGN gamma-ray emission
 - dark matter searches
 - gamma-ray binaries
 - spatially-resolved supernova remnants and pulsar wind nebulae
 and so on...

We are looking forward to joint observations with CTA/LST and synergies with upgraded LIGO/VIRGO/IceCube and others...
Gravitational microlensing: dynamics of the magnification map

This magnification pattern is changing in time as the separate stars-lenses are moving with respect to each other.

However, the peculiar velocities of the stars in galaxies are typically ~ 10-100 km/s and typical time scale for a change is ~ 10 years.
On shorter time scales the pattern can be considered stable.
Gravitational (micro)lensing

PKS 1830-211

Radio (Patnaik et al. 1994)