Efficient methods to probe Stochastic Gravitational Wave Background Anisotropy

With Ground-based Detectors

To Map the GW Sky

http://mwmw.gsfc.nasa.gov/mmw_allsky.html

slide: Sanjit Mitra

ICRR seminar, March 11,2019 Jishnu Suresh

Stochastic Gravitational Wave Background (SGWB)

- individually undetectable (subthreshold)
- but detectable as a collectivity via their common influence on multiple detectors
- combined signal described statistically—stochastic gravitational-wave background

trstitute for Cosmic University of Tokyo

Stochastic Gravitational Wave Background (SGWB)

- Unresolved astrophysical or cosmological sources
 - popcorn or continuous
- Carry information not accessible in electro-magnetic astronomy
 - astrophysical sources

 information on the anisotropic
 local universe
 - primordial cosmological background (CGWB)
 - direct probe of inflation
- Persistent unknown isotropic or anisotropic sources

Characterizing the stochastic background $\Omega_{\rm GW}(f) = \frac{1}{\rho_c} \frac{d\rho_{\rm GW}}{d\log f}$

$$\rho_c = \frac{3c^2 H_0^2}{8\pi G_N} = 7.8 \times 10^{-9} \mathrm{erg/cm^3}$$

Critical energy density to close the universe

Many models give power law spectra in our band

$$\Omega_{\rm GW}(f) = \Omega_{\alpha} \left(\frac{f}{f_{\rm ref}}\right)^{\alpha}$$

lpha = 0 Flat (inflation, cosmic strings in our band...) lpha = 2/3 Binary inspiral (BBH, BNS)

Potentially detectable with advanced LIGO/Virgo

Types of Stochastic Gravitational Wave Background

(i) Stochastic backgrounds can differ in spatial distribution

<u>(statistically) isotropic</u>

(like cosmic microwave background)

KAGRA

<u>anisotropic</u>

(galactic plane in equatorial coords)

Joe's lectures;Les Houches Summer School 2018

(ii) differ in temporal distribution and amplitude

(iii) differ in power spectra depending on source

Joe's lectures;Les Houches Summer School 2018

ICRR seminar, March 11,2019 Jishnu Suresh

Example: Rate estimates and signal durations imply BNS "confusion" & BBH "popcorn" for LIGO / Virgo

Example: Rate estimates and signal durations imply BNS "confusion" & BBH "popcorn" for LIGO / Virgo

istitute for Cosmic University of Tokyo

Jishnu Suresh

東京大学

Cross-Correlation Search

Allen & Romano (2001)

- Detector output = true signal + noise
- Normally detector noise are uncorrelated for far away detectors and times:
- Cross-correlation (CC) statistic is the best choice for unmodeled sources
 - one detector's signal is the filter for other detector's data

$$\begin{array}{l} h_1 = n_1 + s \\ h_2 = n_2 + s \\ & \text{signal and noise} \\ \text{are uncorrelated} \\ \langle h_1 h_2 \rangle = \overbrace{\langle s^2 \rangle} + \langle sn_1 \rangle + \langle sn_2 \rangle + \langle n_1 n_2 \rangle \\ & \text{signal} \end{array}$$

11

There are three sources of different strength (strong, medium and weak) marked in red.

cross-correlation is essentially a one dimensional map of the sky

Stochastic search

For a power law background...

$$\Omega_{\rm GW}(f) = \Omega_{\alpha} \left(\frac{f}{f_{\rm ref}}\right)^{\alpha}$$

We can write an optimal estimator for the energy density

$$\hat{\Omega}_{\alpha} = \int_{-\infty}^{\infty} \tilde{h}_{1}^{\star}(f)\tilde{h}_{2}(f)\tilde{Q}(f)df$$

Choose Q to maximize SNR for fixed spectral shape:

Overlap reduction function for H1/L1

$$\langle \tilde{h}_1(f)\tilde{h}_2^*(f')\rangle = \frac{1}{2}\delta(f-f')\Gamma_{12}(f)S_h(f)$$

Accounts for separation and orientation of detectors Note we are most sensitive below 100 Hz

Radiometer Algorithm

$$\int dt \int dt' s_1(t) s_2(t') q(t,t') \equiv \int df \, \widetilde{s}_1^*(t,f) \, \widetilde{s}_2(t,f) \, \widetilde{q}(t,f)$$

- Essentially Earth Rotation Synthesis Imaging
 - Cross-correlate detector outputs in short time segments
 - map making: use time dependent phase delay
- Use spectral filters
 - to enhance signal power
 - to reduce noise power

Sky coverage of individual detectors —

Jishnu Suresh

19

Radiometric Search for SGWB

• Observed data := Cross Spectral Density := product of SFT's

$$\mathbf{C}^{I} \equiv C_{ft}^{I} := \widetilde{s}_{I_{1}}^{*}(t;f) \widetilde{s}_{I_{2}}(t;f)$$

• Noise (in the small signal limit):

$$\mathbf{n}^{I} \equiv n_{ft}^{I} := \widetilde{n}_{I_1}^*(t; f) \widetilde{n}_{I_2}(t; f)$$

• Covariance matrix:

$$\mathbf{N} \equiv \operatorname{Cov}(C_{ft}^{I}, C_{f't'}^{I'}) \approx \frac{(\Delta T)^2}{4} \,\delta_{II'} \,\delta_{tt'} \,\delta_{ff'} \,P_{I_1}(t; f) \,P_{I_2}(t; f)$$

CSD Observed from an Anisotropic Background

- Anisotropic SGWB in some basis: $\mathcal{P}(\hat{\Omega}) := \sum_{\alpha} \mathcal{P}_{\alpha} e_{\alpha}(\hat{\Omega}); \quad \mathcal{P} \equiv \mathcal{P}_{\alpha}$
- Observed CSD = convolution of anisotropic background with additive noise $\Box = \nabla I U \nabla I U$

$$C_{ft}^{I} := \sum_{\alpha} K_{ft,\alpha}^{I} \mathcal{P}_{\alpha} + n_{ft}^{I}$$
 Low signal limit

- the "kernel" or "beam":

$$\mathbf{K}^{I} \equiv K^{I}_{ft,\alpha} := \Delta T H(f) \gamma^{I}_{\alpha}(f,t)$$

* generalized overlap reduction function

$$\gamma_{\alpha}^{I}(f,t) := \sum_{A=+,\times} \int_{S^{2}} \mathrm{d}\hat{\mathbf{\Omega}} F_{I_{1}}^{A}(\hat{\mathbf{\Omega}},t) F_{I_{2}}^{A}(\hat{\mathbf{\Omega}},t) e^{2\pi \mathrm{i}f\hat{\mathbf{\Omega}}\cdot\mathbf{\Delta x}(t)/c} e_{\alpha}(\hat{\mathbf{\Omega}})$$

ML Estimation of SGWB Anisotropy

• ML estimate of SGWB anisotropy in any basis with a network of detectors:

$$\mathcal{P}(\hat{\mathbf{\Omega}}) := \sum_{\alpha} \mathcal{P}_{\alpha} e_{\alpha}(\hat{\mathbf{\Omega}}); \ \mathcal{P} \equiv \mathcal{P}_{\alpha}$$
 $\hat{\mathcal{P}}_{\alpha} \equiv \hat{\mathcal{P}} = \mathbf{\Sigma} \cdot \mathbf{X}$

- "Dirty" map (essentially filtered output):

$$\mathbf{X} := \mathbf{K}^{\dagger} \cdot \mathbf{N}^{-1} \cdot \mathbf{C} \quad \Rightarrow \quad X_{\alpha} = \frac{4}{\Delta T} \sum_{I,ft} \frac{H(f) \,\gamma_{ft,\alpha}^{I*}}{P_{I_1}(t;f) \, P_{I_2}(t;f)} \,\widetilde{s}_{I_1}^*(t;f) \,\widetilde{s}_{I_2}(t;f)$$

- Fisher information matrix:

$$\boldsymbol{\Sigma}^{-1} := \mathbf{K}^{\dagger} \cdot \mathbf{N}^{-1} \cdot \mathbf{K} \Rightarrow \left[\boldsymbol{\Sigma}^{-1} \right]_{\alpha \alpha'} = 4 \sum_{I, ft} \frac{H^2(f)}{P_{I_1}(t; f) P_{I_2}(t; f)} \gamma_{\alpha}^{I*}(f, t) \gamma_{\alpha'}^{I}(f, t) \right]$$

Base Line Sidereal Rotation

The white circles indicate positions in the sky map which will have equal time/phase delay when the signal from that part of the sky arrive in the LIGO Livingston and Hanford detectors

東京大学

rstitute for Cosmic suivers ty of Tokyo

SGWB point source processing

rstitute for Cosmic niversity of Tokyo

SGWB point source post-processing

KAGRA

東京大学

Visualising the Stochastic Pipeline -

Anirban Ain, IUCAA

SGWB extended source pre-processing

KAGRA

東京大学

For an extended source in sky (top-left) the cross-correlation results are calculated (bottom right) and stored (bottom left).

ICRR seminar, March 11,2019

Jishnu Suresh

SGWB extended source processing

For an extended point source in sky the cross-correlation results are turned into maps (top-left).

Visualising the Stochastic Pipeline -

Anirban Ain, IUCAA

SGWB extended source post-processing

KAGRA

東京大学

Visualising the

Stochastic Pipeline

1

Anirban Ain, IUCAA

ICRR seminar, March 11,2019 Jishnu Suresh

Folding stochastic data to one sidereal day

- No approximation, based on a mathematical symmetry
- Incorporates all the dirty stuff (quality cuts, overlapping window correction)

Folded full LIGO O2 CSD (abs)

Folding Data

• The estimator ("dirty map")

$$X_{\alpha} = \sum_{Ift} K_{\alpha,ft}^{I*} \left[\sigma_{Ift}^{-2} C_{ft}^{I} - \frac{1}{2} \varepsilon_{t-1}^{I} \left\{ \sigma_{Ift}^{-2} + \sigma_{If(t-1)}^{-2} \right\} C_{f(t-1)}^{I} - \frac{1}{2} \varepsilon_{t+1}^{I} \left\{ \sigma_{Ift}^{-2} + \sigma_{If(t+1)}^{-2} \right\} C_{f(t+1)}^{I} \right]$$

$$= \sum_{Ift_{sid}} K_{\alpha,ft_{sid}}^{I*} \sum_{i_{day}} \left[\sigma_{If(i_{day}+t_{sid})}^{-2} C_{f(i_{day}+t_{sid})}^{I} - \frac{1}{2} \varepsilon_{i_{day}+t_{sid}-1}^{I} \left\{ \sigma_{If(i_{day}+t_{sid})}^{-2} + \sigma_{If(i_{day}+t_{sid}-1)}^{-2} \right\} C_{f(i_{day}+t_{sid}-1)}^{I} - \frac{1}{2} \varepsilon_{i_{day}+t_{sid}+1}^{I} \left\{ \sigma_{If(i_{day}+t_{sid})}^{-2} + \sigma_{If(i_{day}+t_{sid}-1)}^{-2} \right\} C_{f(t_{sid}+t_{sid}+1)}^{I}$$

• The Fisher information matrix (three data streams)

$$\begin{split} \Gamma_{\alpha\alpha'} &= \sum_{Ift} K_{\alpha,ft}^{I*} \left[\sigma_{Ift}^{-2} K_{ft,\alpha'}^{I} - \frac{1}{2} \varepsilon_{t-1}^{I} \left\{ \sigma_{Ift}^{-2} + \sigma_{If(t-1)}^{-2} \right\} K_{f(t-1),\alpha'}^{I} \right. \\ &- \left. \frac{1}{2} \varepsilon_{t+1}^{I} \left\{ \sigma_{Ift}^{-2} + \sigma_{If(t+1)}^{-2} \right\} K_{f(t+1),\alpha'}^{I} \right] \\ &= \sum_{Ift_{sid}} K_{\alpha,ft_{sid}}^{I*} K_{ft_{sid},\alpha'}^{I} \sum_{i_{day}} \sigma_{If(i_{day}+t_{sid})}^{-2} \\ &- \sum_{Ift_{sid}} K_{\alpha,ft_{sid}}^{I*} K_{f(t_{sid}-1),\alpha'}^{I} \sum_{i_{day}} \frac{1}{2} \varepsilon_{i_{day}+t_{sid}-1}^{I} \left\{ \sigma_{If(i_{day}+t_{sid})}^{-2} + \sigma_{If(i_{day}+t_{sid}-1)}^{-2} \right\} \\ &- \sum_{Ift_{sid}} K_{\alpha,ft_{sid}}^{I*} K_{f(t_{sid}+1),\alpha'}^{I} \sum_{i_{day}} \frac{1}{2} \varepsilon_{i_{day}+t_{sid}+1}^{I} \left\{ \sigma_{If(i_{day}+t_{sid})}^{-2} + \sigma_{If(i_{day}+t_{sid}-1)}^{-2} \right\} \end{split}$$

(HV baseline)

(LV baseline)

- No data quality cuts has been incorporated to these SIDs
- One can incorporate either in folding code or SID code

Validation of Folded Data

東京大学

RMS Differences = RMS (folded - unfolded) / RMS (unfolded)

A LSC 36	ICRR seminar, March 11,2019	CR
SNR map	= 2.08e-02	
Variance map	= 2.12e-03	
Clean map	= 2.25e-02	
Dirty map	= 2.05e-02	
Clean SpH	= 2.44e-02	
Dirty SpH	= 2.38e-02	
Imaginary parts of FSID Fisher matrix	= 4.92 e-03	
 Real parts of FSID Fisher matrix	= 4.51e-03	

	Conventional pipeline	Folding pipeline
Intermediate data	450 GB	1.5 GB
Processing time	10 CPU years	10 CPU days
Intermediate results	800 TB	2.5 TB
Final results	500 MB	500 MB

PyStoch - fast HEALPix based SGWB mapmaking

- Folding + PyStoch = Few thousand times speed up
 - perform the whole analysis on a laptop in few minutes!
- Produces the narrowband maps as intermediate result
 - so separate search for different frequency spectra becomes redundant

Efficient Overlap Reduction Function Computation

Breaking Down the ORF

3314 pairs of seed maps (for one sidereal day) produced in a laptop in 20 seconds.

ORF from ORF seed maps

Institute for Cosmic University of Tokyo

(New) Stochastic Pipeline - PyStoch

	Conventional pipeline	Folding pipeline	Folding and PyStoch
Intermediate data	450 GB	1.5 GB	1.5 GB
Processing time	10 CPU years	10 CPU days	40 CPU minutes
Intermediate results	800 TB	2.5 TB	Not required
Final results	500 MB	500 MB	500 MB

Ain, Suresh & Mitra, PRD 98 024001 (2018)

Narrowband Maps

1920 Narrowband maps (20 Hz to 500 Hz, 0.25 Hz bins) produced in a laptop in less than 10 minutes.

ICRR seminar, March 11,2019 Jishnu Suresh

istitute for Cosmic Suiversity of Tokyo

Multi-baseline studies

Multi baseline improvements :

Phys. Rev. D 83, 063002, 2011

- Sensitivity improvement
- Sky coverage
- Parameter accuracy
- Quality of the sky maps

How the stochastic analysis is going to improve with KAGRA coming online ?

Multi-baseline Maps : Broad Source

Institute for Cosmic Daivers ty of Tokyo

Multi-baseline Maps : Clean Maps

• The GW radiometer algorithm is optimal to search for backgrounds

– folding+PyStoch has made the algorithm few thousand times faster

- PyStoch is handy to study multi baseline efficiency for stochastic searches
- can also search for persistent unknown sources
- can rapidly follow up the outliers

...and we expect many more weaker signals... Stay tuned for..

