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Dwarf Spheroidal Galaxy (dSph)
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Dwarf Spheroidal Galaxy (dSph)

Important properties of dSphs:

% Detailled chemo-dynamical study through their resolved stars
o Dark matter rich
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DSph galaxies are ideal sites for
studying dark matter properties.




Small-scale challenges to A CDM paradigm

Definition of "small scales”

M. < 10M"M_, k> 3Mpc™!, r < IMpc
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<4 Missing satellite problem
- Overabundance of dark subhalos
<4 Core-cusp problem
- Cuspy central density in CDM halos vs. cores in observed galaxies
<4 Too-big-to-fail problem
- Most massive subhalos are more concentrated than observed luminous satellites
+ the other problems (satellite planes, shapes of dark halo, and so on...)



Small-scale challenges to A CDM paradigm

4 Core-cusp problem

- Cuspy central density in CDM halos vs. cores in observed galaxies
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Possible solutions:

- Baryonic feedbacks
Stellar feedbacks such as SNe can
transform central cusp into cored
dark matter profiles.

- Alternative dark matter models
The other dark matter models motivated
by particle physics (SIDM, SIMP, Axion..)
can create a cored density profiles
without relying on any baryon effects.
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BUT...
- Uncertainties of dynamical models

- Incomplete observational data

Whether dSphs have cusped or cored dark halo is yet unclear

because of many systematic uncertainties on estimates of their

dark halo profiles.




Indirect search for dark matter particles

CDEACD— ] j J d£dQp2 (£.0
- ﬂmDM Z ! dE AQ J1l.o.s pDM( )

Gamma-ray flux Particle phyS|cs

Gamma-ray observation

Medium-energy

gamma rays

- Indirect searches for DM through its annihilation
- MW dSphs are ideal targets for detecting a DM signal
- Understanding the DM distribution of the dSphs is of very importance!




Dynamical modeling for
dwart spheroidal galaxy



How to derive DM profiles in the dSphs™?

- The dSphs are not rotation but dispersion supported systems.

- Due to a DM dominated system, the effects of gravity of stars can be negligible small.

. Current observable data provide sky and l.o.s velocity distributions of the resolved stars.
. Jeans analysis is the most common way to derive DM profiles in the dSphs.
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Non-negligible systematic uncertainties on the estimates
of DM distributions

- Non-spherical dark halo (Hayashi et al. 2016)

Most previous works have assumed spherical mass models for simplicity, even
though the distributions of luminous and dark components in dSph are actually
not spherical.

- Foreground contaminations (Ichikawa (inc. KH) et al. 2017a,b)

Foreground contaminations have largely impact on determining dark halo
profiles, especially ultra faint dwarf galaxies.

- Sample volume (Subaru PES)
Due to insufficient number of available data especially in the outer regions of the
dSphs, current dynamical analyses still place poor constraints on dark halo
structures.
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Non-negligible systematic uncertainties on the estimates
of DM distributions

- Non-spherical dark halo (Hayashi et al. 2016)
Most previous works have assumed spherical mass models for simplicity, even
though the distributions of luminous and dark components in dSph are actually
not spherical.
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Non-spherical dynamical mass models

Axisymmetric Jeans egs.
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* The uncertainties of non-sphericity should be
important.



Non-negligible systematic uncertainties on the estimates
of DM distributions

- Foreground contaminations (Ichikawa (inc. KH) et al. 2017a,b)

Foreground contaminations have largely impact on determining dark halo
profiles, especially ultra faint dwarf galaxies.
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New fitting function including contamination effects
Ichikawa et al. (2017, 2018)

Big efforts to reduce contaminations--:
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New fitting function including contamination effects
Ichikawa et al. (2017, 2018)

L= H [Sfvem(Vi> R) + (1 — $)fpg(vi, R)]
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Non-negligible systematic uncertainties on the estimates
of DM distributions

- Non-spherical dark halo (Hayashi et al. 2016)

Most previous works have assumed spherical mass models for simplicity, even
though the distributions of luminous and dark components in dSph are actually
not spherical.

- Foreground contaminations (Ichikawa (inc. KH) et al. 2017a,b)

Foreground contaminations have largely impact on determining dark halo
profiles, especially ultra faint dwarf galaxies.
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Dark matter distributions
in the MW dSphs



DM profiles of the classical dwarfs Hayashietal. (inprep.)
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NO core-cusp problem?

Inner slope of dark matter de.nsit% profile
could depend on star formation history.
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What's the origin of this relation?
FIRE simulation (Onorbe et al. 2015)
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“Dwarf late™ has successive SFH and thus has undergone periodical SN feedbacks.
—> Feedback energy can be injected constantly into dark matters in the inner regions.

“Dwarf early” has also successive SFH but its star formation activity at late epoch is not

stronger than Dwarf late.
—> Feedback energy is not enough to keep core, and its profile turns back cupsy.
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Prospects for
Subaru Prime Focus
Spectrograph



SUBARUPRIMEFOCUSSPECTROGRAPH

~ast facts

- Wide field: ~1.5deg diameter

- Massive multiplicity: 2394 fibers
- fiber diameter: ~1.05 arcsec

: PFimulate |

over thts hexMul ﬁeld
[

- fiber positioner pitcha~85arcsec T =
- minmum fiber ati@!BO arcsec
- VIS-NIR coveraget”380-1260nm simultaneously

- Low resolution mode: > 2. 5A reso ution |
- Medium resolution mode (@~80qu): ~1.6A resolution
» Aiming at start of science @p\ratlon & survey Brograffj;m\
2021, as a facility instrument on Subaru Te\escope W

— -
;“ ‘1\ y / 1\“ \

y
‘ ﬁ’ )
&




SUBARUPRIMEFOCUSSPECTROGRAPH

Planing PFS large survey plan

Subaru Strategic Program (SSP; 9 15 2 B 1)

- HSC-SSP has been progressing since 2014

300 nights out to~2019 (20207?)
- PFS-SSP:: A prop (300~360 night) is in preparation.
Kin r the HSC-SSP

- Timely start
- A survey program with the three “pillaéwx
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PFS Galactlc Archaeology (GA) component
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We measure radial velocutles & chemical abundances for a large
~number of stars in the Milky Way and Andromeda to constrain the -
nature of dark matter and |ts roIe in the formation of these galaxres
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Unigueness of PFS-dSph survey
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Survey simulation for Ursa Minor dSph via PFS
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Summary

- The MW dSphs are ideal sites for studying basic properties of
dark matter.

- However, the major hidden systematic uncertainties on
estimates of their dark halo structures still remain.

- In order to treat correctly and statistically these uncertainties,
we constructed new dynamical models for the MW dSphs.

- Applying our models to the classical dSphs, we found a
possible relation between inner slope of dark halo and star
formation history.

- Subaru-PFS will have the remarkable capability to measure
kinematic data of resolved faint stars in the dSphs and thus
will allow us to determine robustly their dark matter structures.
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