Latest Results from T2K

Observation of Electron Neutrino Appearance from a Muon Neutrino Beam

Shoei Nakayama
Kamioka Observatory, ICRR

July 19, 2013
ICRR seminar

Official release of this result is to be at EPS conference in Stockholm.

Strict press embargo time: 21:30 (JST) on July 19th, 2013
No e-mails, no phone calls, no blogs, no tweets, ... until 21:30
Summary

- T2K has made the definitive observation of ν_e appearance from the ν_μ beam
 - Using 6.39×10^{20} Protons-On-Target beam data ($\times 2.1$ of 2012 analysis) obtained by the stable beam and detector operations
 - Analysis improvements also contributed: Improved Near ν Detector analysis, Improved π^0 background rejection at Super-K Far ν Detector, ...
 - 28 candidate events over 4.6 ± 0.5 (sys.) backgrounds
 - $\theta_{13} = 0$ is excluded at 7.5σ

→ We have entered the era of ν_e appearance “measurement” for exploring the leptonic CPV and ν mass hierarchy!

- Now is the time to realize a new project in Japan
 - Hyper-K has great potential for discovering new physics
 - Need your strong support to the project
Neutrino Oscillation

- **Flavor eigenstate** \((\nu_e, \nu_\mu, \nu_\tau) \neq \text{Mass eigenstate} (\nu_1, \nu_2, \nu_3)\)

\[
\begin{pmatrix}
\nu_\alpha \\
\nu_\beta
\end{pmatrix} = \begin{pmatrix}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{pmatrix}
\begin{pmatrix}
\nu_1 \\
\nu_2
\end{pmatrix}
\]

Two-flavor case

- Probability that a neutrino originally generated as \(\nu_\alpha\) will later be observed as \(\nu_\beta\) after traveling a distance of \(L\):

\[
P(\nu_\alpha \rightarrow \nu_\beta) = \sin^2 (2\theta) \sin^2 \left(\frac{1.27 \Delta m^2 (eV^2) L (km)}{E_\nu (GeV)} \right)
\]

\(\Delta m^2 = m_2^2 - m_1^2\)

\(\nu\) oscillation experiments:

- Measure the disappearance of \(\nu_\alpha\)
- Measure the appearance of \(\nu_\beta\)
Unknowns in Neutrino Oscillation Parameters

\[
\begin{pmatrix}
\nu_e \\
\nu_\mu \\
\nu_\tau
\end{pmatrix} =
\begin{pmatrix}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{pmatrix}
\begin{pmatrix}
c_{13} & 0 & s_{13} e^{-i\delta} \\
0 & 1 & 0 \\
-s_{13} e^{i\delta} & 0 & c_{13}
\end{pmatrix}
\begin{pmatrix}
c_{12} & s_{12} & 0 \\
-c_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
\nu_1 \\
\nu_2 \\
\nu_3
\end{pmatrix}
\]

\[c_{ij} = \cos\theta_{ij}, \ s_{ij} = \sin\theta_{ij}\]

- \(\theta_{12} = 33.6^\circ \pm 1.0^\circ\) Solar \(\nu\), KamLAND
- \(\theta_{23} = 45^\circ \pm 6^\circ\) (90\%CL) Atm. \(\nu\), Acc. \(\nu\)
 \(\theta_{23}\): How close to 45°? Octant? (<45°, >45°?)
- \(\theta_{13} = 9.1^\circ \pm 0.6^\circ\)

Neutrino Mass Hierarchy

- Normal OR Inverted

\(\sim 7.6\text{e-}5\text{ eV}^2\)
\(\sim 2.4\text{e-}3\text{ eV}^2\)

Indication of \(\theta_{13}\neq0\) by T2K
PRL107, 041801 (2011)

Later precise measurements by reactor \(\nu\) experiments
\(\theta_{13} \) Measurements

- **Reactor neutrino experiments**: \(\bar{\nu}_e \) disappearance

\[
P(\bar{\nu}_e \rightarrow \bar{\nu}_e) \approx 1 - \sin^2(2\theta_{13}) \sin^2 \left(\frac{1.27 \Delta m^2_{31} L(m)}{E_\nu(MeV)} \right)
\]

- **Accelerator neutrino experiments**: \(\nu_e \) appearance

\[
P(\nu_\mu \rightarrow \nu_e) \approx \sin^2(2\theta_{13}) \sin^2 \theta_{23} \sin^2 \left(\frac{1.27 \Delta m^2_{31} L(km)}{E_\nu(GeV)} \right)
\]

Sub-leading terms:

\[
\begin{align*}
+8C_{13}^2 S_{12} S_{13} S_{23} (C_{12} C_{23} \cos \delta - S_{12} S_{13} S_{23}) \cdot \cos \Delta_{32} \cdot \sin \Delta_{31} \cdot \sin \Delta_{21} \\
-8C_{13}^2 C_{12} C_{23} S_{12} S_{13} S_{23} \sin \delta \cdot \sin \Delta_{32} \cdot \sin \Delta_{31} \cdot \sin \Delta_{21} \\
+4S_{12}^2 C_{13}^2 (C_{12} C_{23}^2 + S_{12}^2 S_{23}^2 S_{13}^2 - 2C_{12} C_{23} S_{12} S_{23} S_{13} \cos \delta) \cdot \sin^2 \Delta_{21} \\
-8C_{13}^2 S_{13}^2 S_{23}^2 \frac{aL}{4E_\nu} (1 - 2S^2_{13}) \cdot \cos \Delta_{32} \cdot \sin \Delta_{31} \\
+8C_{13}^2 S_{13}^2 S_{23}^2 \frac{a}{\Delta m^2_{31}} (1 - 2S^2_{13}) \cdot \sin^2 \Delta_{31}
\end{align*}
\]

\(\delta \rightarrow -\delta \)
\(a \rightarrow -a \)

for \(P(\bar{\nu}_\mu \rightarrow \bar{\nu}_e) \)

Sensitivity to CPV phase \(\delta \) and \(\nu \) mass hierarchy

Opens the possibility to explore CPV in the lepton sector

NOTE: solar/atmospheric \(\nu \) data are also sensitive to \(\theta_{13} \)
T2K (Tokai-to-Kamioka) Experiment

Discovery of ν_e appearance ($\nu_\mu \rightarrow \nu_e$ oscillation)

- Direct detection of ν flavor mixing ($\theta_{13} \neq 0$) by an “appearance” channel
- Opens the possibility to probe the leptonic CP violation

Precision measurement of ν_μ disappearance

- $\delta(\Delta m^2_{32}) \sim 1 \times 10^{-4} \text{eV}^2$, $\delta(\sin^2 2\theta_{23}) \sim 0.01$
T2K Data-Taking and ν_e Search History

In 2011
- First indication of ν_e appearance (2.5σ) using RUN1-2 data (2% of T2K full stat.)
- In 2012
- >3σ signal of ν_e appearance using RUN1-3 data (4% of T2K full stat.)

Earthquake (2011.3.11)

11 events over 3.3±0.4(sys.) bkgs

~5σ ν̅_e disappearance (Daya Bay/RENO)
Data Set in this Talk

Steady beam data accumulation during T2K RUN4
- Beam power reached 235kW
- Very stable Super-K operation: livetime ≈ 99%

Previous analysis (2012): RUN1+2+3, 3.010×10^{20} POT (Protons-On-Target)

This analysis (2013): RUN1+2+3+4 (by April 12th), 6.393×10^{20} POT

Analyzed up to April 12th, 2013
30GeV protons from J-PARC MR

Near detectors
- Target & Horns
- Muon monitor

Decay volume
- π⁺
- μ⁺

Off-axis ν beam
- Intense narrow-band @osc. max. (~0.6GeV)
 - Reduce high energy tail which creates BG

Off-axis ν detector (ND280)
- Measures ν flux/spectrum before oscillations @2.5° OA
- 0.2T magnet field

SCMRD (magnet yolk)
- ECAL
- Tracker
- FGD
- TPC

Fine-Grained Detectors (FGDs)
- Scintillator strips, 1.6t fiducial target, Detailed vertex info.

Time Projection Chamber (TPCs)
- Gas ionization, Momentum by curvature, PID by dE/dx

NIM A659, 106 (2011)
- 2.5° beam center
- 295km
- 0 120m 280m
Beam Stability

INGRID on-axis ν detector monitors beam intensity, direction, and profile.

- POT normalized ν event rate is very stable (<1%)
- Beam direction is controlled well within the design requirement of 1mrad (→ 2% shift in the peak energy of ν spectrum)
T2K Far ν Detector : Super-Kamiokande

- 50kton Water Cherenkov detector
 - 22.5kton fiducial mass
 - World largest "ν & proton-decay" detector

- Located in the Kamioka Observatory
 - 295km from J-PARC

- Excellent detection capability
 - Ring-shaped pattern on the detector wall

- Atmospheric ν data as control samples to study detector performance

- T2K trigger records all the PMT hits within $\pm 500\mu$s of the beam arrival time
 - Time synchronization by GPS
Electron/Muon PID at Super-K

- Particle identification using ring shape and opening angle
- Probability that a muon is mis-identified as an electron is <1%
- Very small ν_μ CC background for ν_e appearance search
Signal and BG for T2K ν_e appearance search

signals

Single electron event by CC interaction of ν_e oscillated from ν_μ
- Mainly CCQE: $\nu_e + n \rightarrow e^- + p$
- Protons mostly have momenta below Cherenkov threshold

backgrounds

(1) intrinsic ν_e in the beam (from μ, K decays)
(2) NC single π^0 events
 - overlap of 2 γ rings
 - asymmetric decay
 (one of the γ has very low energy)
Oscillation Analysis Strategy

Neutrino Flux
MC simulation of beamline based on hadron production meas. (NA61/SHINE) and beam monitor meas.

Neutrino Interaction
Model (NEUT) tuned/constrained with external data

ND280 Measurements
- ν_μ CC enhanced samples (CC0π, CC1π^+, and CCother)
- Intrinsic ν_e and NC π^0 measurements as cross-check

Constraint on flux & cross section

SK Prediction

Oscillation parameter fit

SK Data : ν_e candidates
Predicted Neutrino Flux

Fractional Error on ν_μ flux @SK

- Total
- Hadronic Interactions
- Proton Beam, Alignment and Off-axis Angle
- Horn Current & Field
- MC Stat.

Fractional Error on ν_e flux @SK

- Total
- Hadronic Interactions
- Proton Beam, Alignment and Off-axis Angle
- Horn Current & Field
- MC Stat.

ν_e fraction: <1% @ E_ν peak

Total flux error: 10~15%
Near Detector Constraint on SK Prediction

- SK flux parameters are constrained through their prior correlations with the ND280 ν_μ flux parameters

\[\nu_e \text{ and } \nu_\mu \text{ fluxes are correlated through parent hadrons} \]

- Subset of cross section parameters are correlated at near & far detectors: M_A^{QE}, M_A^{RES}, CCQE/CC1π/NC$1\pi^0$ normalizations
ND Fit Data Inputs

New ν_μ CC sample classification: CC0π, CC1π^+, CCother

- In 2012 analysis, 2 categories: CCQE-like (1 track) & CCnonQE-like (2 tracks)
- Much better samples for constraining CCQE & CC1π cross section parameters

Data are binned in two dimensions: μ momentum (p) and angle ($\cos \theta$)

- Finer binning than 2012 analysis

Composition

<table>
<thead>
<tr>
<th></th>
<th>CCQE</th>
<th></th>
<th>CCQE</th>
<th></th>
<th>CCQE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>63.5 %</td>
<td></td>
<td>5.3 %</td>
<td></td>
<td>3.9 %</td>
<td></td>
</tr>
<tr>
<td>CCQE</td>
<td></td>
<td></td>
<td>Resonant</td>
<td>20.2 %</td>
<td>Resonant</td>
<td>39.5 %</td>
</tr>
<tr>
<td>Resonant</td>
<td>20.2 %</td>
<td></td>
<td>DIS</td>
<td>7.5 %</td>
<td>DIS</td>
<td>31.3 %</td>
</tr>
<tr>
<td>DIS</td>
<td>7.5 %</td>
<td></td>
<td>Coherent</td>
<td>1.4 %</td>
<td>Coherent</td>
<td>10.6 %</td>
</tr>
<tr>
<td>Coherent</td>
<td>1.4 %</td>
<td></td>
<td>Other</td>
<td>7.4 %</td>
<td>Other</td>
<td>13.3 %</td>
</tr>
<tr>
<td>Other</td>
<td>7.4 %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Near Detector Distributions after the Fit

<table>
<thead>
<tr>
<th>(# of events)</th>
<th>CC0π</th>
<th>CC1π⁺</th>
<th>CCother</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>16912</td>
<td>3936</td>
<td>4062</td>
</tr>
<tr>
<td>Unconstrained MC</td>
<td>20016</td>
<td>5059</td>
<td>4602</td>
</tr>
<tr>
<td>Constrained MC</td>
<td>16803</td>
<td>3970</td>
<td>4006</td>
</tr>
</tbody>
</table>

Improved agreement after the fit
Constrained SK Flux and Cross Section Params

Significant error reduction

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Prior to ND Constraint</th>
<th>After ND Constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_{A}^{QE} (GeV)</td>
<td>1.21 ± 0.45</td>
<td>1.22 ± 0.07</td>
</tr>
<tr>
<td>M_{A}^{RES} (GeV)</td>
<td>1.41 ± 0.22</td>
<td>0.96 ± 0.06</td>
</tr>
<tr>
<td>CCQE norm.</td>
<td>1.00 ± 0.11</td>
<td>0.96 ± 0.08</td>
</tr>
<tr>
<td>CC1π norm.</td>
<td>1.15 ± 0.32</td>
<td>1.22 ± 0.16</td>
</tr>
</tbody>
</table>
T2K ν_e event selection at Super-K

1. Beam on-timing & Fully-contained (FC) in the inner detector
2. Vertex in the fiducial volume
3. Number of rings = 1
4. Electron-like PID
5. Visible energy > 100MeV
 - rejects low energy NC events and electrons from invisible μ, π decays
6. No delayed electron signal
 - rejects events with invisible μ, π
7. Reconstructed ν energy < 1.25GeV
 - rejects intrinsic beam ν_e at high energy
8. Non-π^0-like

Improved by New Algorithm

Developed new π^0 rejection algorithm. The other cuts unchanged.
A New Event Reconstruction Tool: fiTQun

\[L(x) = \prod_i P(i_{\text{unhit}}|x) \prod_i P(i_{\text{hit}}|x) f_q(q_i|x) f_t(t_i|x) \]

- A maximum likelihood fitter
- For a given track(s) hypothesis, a charge and time PDF is produced for every PMT
 - Charge PDF can be factorized into predicted charge and PMT response
- Track parameters \(x \) (vertex, direction, momentum, ...) are fit simultaneously to maximize the likelihood
 - Step-by-step reconstruction in the previous algorithm
 - For PID, compare final likelihoods for \(\pi^0 \) and electron assumptions
\(\pi^0 \) Background Rejection by fiTQun

This time, we use the fiTQun reconstruction only at the \(\pi^0 \) rejection cut (fiTQun will also improve vertex/angle/momentum resolutions, PID, etc.)

T2K MC events with \(\geq 1 \, \pi^0 \)

T2K MC \(\nu_e \) CC signal events

Horizontal: Reconstructed \(\pi^0 \) mass
Vertical: Likelihood ratio of \(\pi^0 \) and 1-ring electron hypotheses

Clear separation
π⁰ Background Rejection by fiTQun

Performance evaluation using “π⁰ particle guns” MC
(with a flat momentum 0-500MeV/c)

Reconstructed π⁰ mass

\[\begin{align*}
\text{fiTQun} & \quad \text{POLfit} \\
\text{(original algorithm)} & \\
\end{align*} \]

π⁰ rejection efficiency

\[\begin{align*}
\text{fiTQun} & \quad \text{POLfit} \\
\text{(original algorithm)} & \\
\end{align*} \]

True energy of the less energetic γ (MeV)

The 2nd γ ring is missed by POLfit. fiTQun doesn’t have such a pileup at zero, and the low mass tail is lower than POLfit.

fiTQun is more sensitive to lower energy photons than POLfit.

Improved performance
Predicted Number of Events at Each Cut

<table>
<thead>
<tr>
<th>Cut Description</th>
<th>$\nu_{\mu} CC$</th>
<th>$\nu_{e} CC$</th>
<th>NC</th>
<th>BG all</th>
<th>Sig. ν_e</th>
</tr>
</thead>
<tbody>
<tr>
<td>True FV</td>
<td>308</td>
<td>15.0</td>
<td>272</td>
<td>594</td>
<td>25.6</td>
</tr>
<tr>
<td>(2) FCFV</td>
<td>234</td>
<td>14.4</td>
<td>76.5</td>
<td>325</td>
<td>24.8</td>
</tr>
<tr>
<td>(3) 1 ring</td>
<td>135</td>
<td>9.2</td>
<td>21.6</td>
<td>166</td>
<td>21.5</td>
</tr>
<tr>
<td>(4) e-like</td>
<td>5.3</td>
<td>9.1</td>
<td>14.9</td>
<td>29.3</td>
<td>21.2</td>
</tr>
<tr>
<td>(5) $E_{\text{vis}}>100\text{MeV}$</td>
<td>3.5</td>
<td>9.1</td>
<td>12.7</td>
<td>25.2</td>
<td>20.9</td>
</tr>
<tr>
<td>(6) No decay-e</td>
<td>0.7</td>
<td>7.4</td>
<td>10.6</td>
<td>18.7</td>
<td>18.6</td>
</tr>
<tr>
<td>(7) $E_{\nu\text{rec}}<1.25\text{GeV}$</td>
<td>0.2</td>
<td>3.5</td>
<td>8.0</td>
<td>11.8</td>
<td>17.9</td>
</tr>
<tr>
<td>(8) fiTQuin π^0 cut</td>
<td>0.06</td>
<td>3.1</td>
<td>0.9</td>
<td>4.0</td>
<td>16.4</td>
</tr>
<tr>
<td>Efficiency</td>
<td><0.1%</td>
<td>20%</td>
<td>0.3%</td>
<td>0.7%</td>
<td>64%</td>
</tr>
<tr>
<td>(8)' POLfit π^0 cut</td>
<td>0.12</td>
<td>3.2</td>
<td>2.3</td>
<td>5.6</td>
<td>16.8</td>
</tr>
<tr>
<td>Efficiency</td>
<td><0.1%</td>
<td>21%</td>
<td>0.8%</td>
<td>0.9%</td>
<td>66%</td>
</tr>
</tbody>
</table>

NC BG reduced to ~40% compared to previous ν_e selection with keeping signal efficiency high

With $\sin^2 2\theta_{13} = 0.1$

6.393×10^{20} POT

unit = events

New Cut

Old Cut
Far Detector (Super-K) Stability

- **μ → e mis-PID**
 - RMS: 0.14%

- **e → μ mis-PID**
 - RMS: 0.19%

Stable

- **Decay-e tagging eff.**
 - ± 2%
Far Detector (Super-K) Systematics

Dominant error coming from the ring-counting, PID, π^0 rejection cuts

Error for ν_e CC components:
- Number of events in each (p_e, θ_e) in the atmospheric ν control sample is fit to evaluate the sys. errors on efficiencies

Error for π^0 BG components:
- π^0 topological control sample combining one data electron and one simulated γ (hybrid π^0)

SK systematic error on predicted # of ν_e candidates is reduced (thanks to the new π^0 rejection)

$3.0\% \ (2012) \rightarrow 2.4\% \ \text{at} \ \sin^2 2\theta_{13} = 0.1$
Predicted Number of ν_e Candidate Events

Predicted # of events w/ 6.393×10^{20} p.o.t.

<table>
<thead>
<tr>
<th>Category</th>
<th>$\sin^2 2\theta_{13} = 0$</th>
<th>$\sin^2 2\theta_{13} = 0.1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν_e signal</td>
<td>0.38</td>
<td>16.42</td>
</tr>
<tr>
<td>ν_e BG</td>
<td>3.17</td>
<td>2.93</td>
</tr>
<tr>
<td>ν_μ BG</td>
<td>0.89</td>
<td>0.89</td>
</tr>
<tr>
<td>$\bar{\nu}_\mu + \nu_e$ BG</td>
<td>0.20</td>
<td>0.19</td>
</tr>
<tr>
<td>Total</td>
<td>4.64 ± 0.52</td>
<td>20.44 ± 1.80</td>
</tr>
</tbody>
</table>

Systematic Uncertainties

<table>
<thead>
<tr>
<th>Source</th>
<th>$\sin^2 2\theta_{13} = 0$</th>
<th>$\sin^2 2\theta_{13} = 0.1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flux + ν int. (ND meas.)</td>
<td>4.9 %</td>
<td>3.0 %</td>
</tr>
<tr>
<td>ν int. (from other exp.)</td>
<td>6.7 %</td>
<td>7.5 %</td>
</tr>
<tr>
<td>Super-K + FSI + SI + PN</td>
<td>7.3 %</td>
<td>3.5 %</td>
</tr>
<tr>
<td>Total</td>
<td>11.1 %</td>
<td>8.8 %</td>
</tr>
<tr>
<td>Total (2012)</td>
<td>13.0 %</td>
<td>9.9 %</td>
</tr>
</tbody>
</table>

Uncertainty reduced much by the ND measurement
T2K Event Selection at Super-K

1. Event timing relative to the beam arrival timing

FC = Fully-Contained events

2. Fiducial volume cut

Spill structure (8 bunches) is clearly seen

Inner detector wall

FV boundary (2m from wall)
T2K ν_e Event Selection at Super-K

3. Number of rings = 1
 186 events

4. Electron-like PID
 58 events

5. Visible energy >100MeV
 Rejects low-E NC events, and electron from invisible μ, π
 55 events

6. No μ decay electron
 Rejects events with invisible μ, π
 43 events
T2K ν_e Event Selection at Super-K (cont’d)

7. Reconstructed $E_\nu < 1.25$ GeV
Reject intrinsic ν_e in the beam (high energy ν_e mainly from K)

8. fiTQun π^0 rejection cut
Reject events with π^0

28 events after all cuts

38 events

4.64 ± 0.52 events expected for $\sin^2 2\theta_{13} = 0$
20.44 ± 1.80 events expected for $\sin^2 2\theta_{13} = 0.1$
Observed ν_e Candidate Events (Several Examples)

All events have a clear showering ring
ν_e Candidate Event Distributions

Vertex X-Y
- Beam dir.
- ID wall
- FV boundary

Direction (cosθ_{beam})
- Number of events
- cos θ_{beam}

Cumulative # of ν_e candidates vs. POT
- KS probability to the constant event rate assumption = 97%

Reasonable distributions

RUN1-4 data
(6.393×10^9 POT)
- Osc. ν_e CC
- ν_e+ν_e CC
- ν_e+ν_µ CC
- NC
(MC w/ sin^2 2θ_{13} = 0.1)
Oscillation Parameter Fits

- Method 1: Maximum likelihood fit w/ Rate + (p_e, θ_e) shape
- Method 2: Maximum likelihood fit w/ Rate + reconstructed E_ν

\[
\mathcal{L}(N_{\text{obs.}}, x; o, f) = \mathcal{L}_{\text{norm}}(N_{\text{obs.}}; o, f) \times \mathcal{L}_{\text{shape}}(x; o, f) \times \mathcal{L}_{\text{syst.}}(f)
\]

Method 1

\[\nu_e \text{ signal} \]

\[\nu_e \text{ background} \]

Method 2

\[\nu_\mu \text{ background} \]

Shape difference allows to have a better discrimination of signal events from background

\[\sin^2 \theta_{13} = 0.1\]
\[\delta_{CP} = 0\]
\[\Delta m^2_{32} = 2.4 \times 10^{-3} \text{ eV}^2\]

(area normalized)
Sensitivity (Expected Significance to Exclude $\theta_{13}=0$)

Averaged log likelihood curve over many toy data with true $\sin^22\theta_{13}=0.1$

(Assuming $\delta_{\text{CP}}=0$, $\sin^22\theta_{23}=1.0$, and normal mass hierarchy)

RUN1-4 vs. RUN1-3 POT

-2*Δ lnL^1 vs. $\sin^22\theta_{13}$

RUN1-4 POT : 5.5σ
RUN1-3 POT : 3.9σ

w/ vs. w/o ND Constraint

-2*Δ lnL^1 vs. $\sin^22\theta_{13}$

w/ ND info. : 5.5σ
w/o ND info. : 4.7σ

NEW vs. OLD SK Selection

-2*Δ lnL^1 vs. $\sin^22\theta_{13}$

NEW (fiTQun) : 5.5σ
OLD (POLfit) : 5.0σ

Significance = $\sqrt{-2\Delta \ln L_{\theta_{13}=0}}$
RUN1-4 Data Fit Results : Method 1 (p-θ)

Normal Hierarchy

-2*ln L

Inverted Hierarchy

-2*ln L

Assuming $\delta_{CP}=0$, $\sin^2 2\theta_{23}=1.0$

$\sin^2 2\theta_{13} = 0.150^{+0.039}_{-0.034}$

Best-fit values w/ 68% confidence intervals

$0.182^{+0.046}_{-0.040}$

$\theta_{13}=0$ is excluded at 7.5σ

→ Definitive observation of electron neutrino appearance!
RUN1-4 Data Fit Results : Method 1 (p-θ)

Data and best-fit MC distributions

68%/90% C.L. regions for $\sin^2 2\theta_{13}$ for each value of δ_{CP}

- **Normal Hierarchy**
 - Assuming $\sin^2 2\theta_{23}=1.0$

- **Inverted Hierarchy**
 - Assuming $\sin^2 2\theta_{23}=1.0$

Momentum vs. Angle (p-θ)

- Run1-4 data (6.393e20 POT)
- Best-fit $\sin^2 2\theta_{13} = 0.150$
- Assuming $\delta_{CP}=0$
- Normal hierarchy, $|\Delta m^2_{31}|=2.4\times10^{-3}\text{ eV}^2$
RUN1-4 Data Fit Results: Method 2 (rec. E_ν)

Data and best-fit MC:
Reconstructed E_ν distribution

Assuming $\delta_{CP}=0$, $\sin^2 2\theta_{23}=1.0$

$$\sin^2 2\theta_{13} = 0.152^{+0.041}_{-0.034} \quad \text{(NH)}$$

$$\sin^2 2\theta_{13} = 0.184^{+0.046}_{-0.041} \quad \text{(IH)}$$

Consistent with Method 1 results
Effect of θ_{23} Uncertainty

- ν_e appearance probability also depends on the value of θ_{23}

\[
P(\nu_\mu \rightarrow \nu_e) \approx \sin^2 2\theta_{13} \sin^2 \theta_{23} \sin^2(\Delta m^2_{31} L/4E)
\]

- T2K ν_e appearance measurement in cooperation with other experiments may give some hint on θ_{23} octant
T2K Next Step:

Can T2K measure δ_{CP}, Mass Hierarchy, θ_{23} Octant?

Detailed sensitivity studies are ongoing

- True NH
 - True $\sin^2 \theta_{23} = 0.5$
 - $\delta_{CP} = 0^\circ$
 - $\delta_{CP} = 90^\circ$

- NH
 - 90% CL

50% $\nu + 50\%$ anti-ν

Full T2K stat.

w/ ultimate θ_{13} meas. w/o NOvA

Significance to exclude $\sin \delta = 0$:

Solid: stat. error only
Dashed: current sys.

T2K will make run plans (anti-ν run, ...) based on these studies.
Observation of ν_e appearance has just been made by T2K

→ We’ve entered the era of ν_e appearance “measurement”

T2K may constrain δ_{CP}, mass hierarchy, and θ_{23} octant (in cooperation with reactor experiments, NOvA, and SK)

But, significance may not be large

To get a definitive conclusion on CPV and to measure δ_{CP}, next generation long-baseline experiments are indispensable

Higher intensity beam + Larger neutrino detector

NOW IS THE TIME to realize a new project in Japan
Hyper-Kamiokande Project

Exploring full picture of neutrino oscillation
- w/ Higher intensity ν beam from J-PARC, Atmospheric ν

Astrophysical neutrinos
- Solar ν, Supernova, WIMP, solar flare, ...

Neutrino geophysics

Proton decay search

Total Mass : 0.99 Mton
Fiducial Mass : 0.56 Mton (x25 of Super-K)
\(\delta_{CP} \) Measurement (Accelerator \(\nu \))

x25 larger \(\nu \) target

= T2K x50

\(\sim 0.6 \text{GeV} \)

2.5° off-axis

x2 more beam \(\nu \)

7.5MW \text{year, } \nu: \text{anti-} \nu = 3:7, \text{ NH (known)}

\(\sin^2 2\theta_{13} = 1 \)

\(\delta_{CP} \)

\(\sin^2 2\theta_{13} \)

\(\delta \) precision (1\(\sigma \) error size)

< 20° at \(\delta = 90° \)

< 10° at \(\delta = 0° \)

For 74% of \(\delta \), \(\sin \delta = 0 \) is excluded with >3\(\sigma \)
Mass Hierarchy & θ_{23} Octant Sensitivity (Atm. ν)

$<$10 years HK atmospheric ν data can determine the MH w/ 3σ.
(Higher significance and earlier in larger θ_{23} case)

If $\sin^2 2\theta_{23} < 0.99$ (\(\sin^2 \theta_{23} < 0.45\) or >0.55), θ_{23} octant can be determined at $>3\sigma$ using 10 years of HK atmospheric ν data.
More Hyper-K Physics

Nucleon decay search
• x10 better sensitivity than SK
• >3σ discovery is possible for lifetime beyond SK limits

Supernova burst ν
• 250,000 ν (SN@10kpc)
• Variation of ν luminosity, temperature, flavor, ...
• MH determination?

Relic supernova ν
• 80 events/year (w/ Gd)

• 200 solar ν/day → ~3σ day/night asym.
• WIMP ν, Solar flare ν, ...
R&D Work and Studies ongoing

- Detector design optimization
 - Cavern stability, Tank shape, Number of compartments, PMT support structure, ...
- New photo-sensor development
 - Hybrid Photo Detector (HPD), Higher QE photo-cathode
- Water purification system
- Electronics/DAQ system
 - Electronics immersed in water?
- Software development
- Physics potential studies
 - Requirements for near detectors

Better performance w/ lower cost
International Hyper-K Working Group

Hyper-K is open to the international community

Three open meetings at IPMU (Kashiwa)

- **1st mtg in August 2012**
 - 100 participants at each mtg.
 - ~50% from abroad

- **2nd mtg in January 2013**

- **3rd mtg in June 2013**

- **Formed international WG**
 - Canada, Spain, Switzerland, Russia, U.K., U.S., and Japan

You are VERY WELCOME to join us!
Summary

- T2K has made the definitive observation of ν_e appearance from the ν_μ beam
 - Using 6.39×10^{20} Protons-On-Target beam data ($\times 2.1$ of 2012 analysis) obtained by the stable beam and detector operations
 - Analysis improvements also contributed: Improved Near ν Detector analysis, Improved π^0 background rejection at Super-K Far ν Detector, ...
 - 28 candidate events over 4.6 ± 0.5 (sys.) backgrounds
 - $\theta_{13} = 0$ is excluded at 7.5σ

→ We have entered the era of ν_e appearance “measurement” for exploring the leptonic CPV and ν mass hierarchy!

- Now is the time to realize a new project in Japan
 - Hyper-K has great potential for discovering new physics
 - Need your strong support to the project
Supplement