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| Sunspots have been depicted in
hlstory as early as more than 2000

| years ago.
ks ;: @”” ﬁw R, P Tl

WEL Palntlng Depicting Sun and Moon (Fragment) Han Dynasty, 1¢c.BC-1c.AD:
from “The Birth of Chinese Civilization”, Tokyo National Museum, p.128, 2010.




1. 14C production rate in the earth’s
atmosphere as an indicator of past
solar activity
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Fig. 1. Radiocarbon gEnesis and mixing.
(From W F Libby, Nobel lecture, 1960)



14C production rates, P(1*C)

14C in the atmosphere has its origin mostly in
marine 4C. It goes back to the ocean.

During the residence time (7 ) of atmospheric
carbon, neutron-induced 1%C is accumulated in the
atmosphere, so that

A(14C/IZC) atm 'A(14C/lzc)marine = (14C) e Z-(COZ)/mlz,atm

+ (decay corr. terms)

P(14C) can be calculated using INTCAL datasets under
assumption of constant r and m.
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e In the %C calibration curve, calendar ages of annual tree-
rings are obtained by dendrochronology.

« Patterns of treering width are used to connect historical

and archaeological tree-rings. (back to ~12400 cal BP for
INTCALO9)
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14C has been measured
traditionally by radio-
metric method, but
currently by
accelerator mass
spectrometry (AMS)
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Compact AMS(NEC, USA)




P(14C) = f(solar activity) +f (earth’s dipole moment)
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Variations of atmospheric "G production rates in the past 3500 years
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2. Correlations between past climate
proxies (East Asia) and 4C
production rates
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(“H-res” data from Bao Yang et al. GRL, GL014485, 2002)
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Temperature anomaly
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Winter-time

Temp Anomaly (°C)

Production Rate ('*C)

Correlation is weak !
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We observe that

e The periods of high summer temperature
records in East Asia for the last 2000years
coincide with the high solar activity periods,
showing that the sun played a significant role in
the East Asian summer climate.

e There are a few exceptional periods (2/16) when
high summer temperature prevailed in the low
solar activity periods.



3. Sun-climate correlations in
shorter timescale



Rainfall/Humidity in late 18t" c. to early 19t" c. in Kinki
& Tokai districts, Japan (from T. Nakatuka,2010)
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Heliospheric magnetic field strenth HMF B
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EL Nino (H) and La Nina (A) tend to occur in low solar
magnetic activity

Cf. HMF B data from Svalgaard and Cliver(2010)
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El Nino

and La Nina (from SR &$ (BfE£%.2010))
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Sea Surface Temperature (SST) distribution(Nino.3 area in red)
from 1E1E|IEEF%OO1H‘I)L:—:3iﬁ%"é—“"‘7—,5‘li|§m%%f§
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Summer temperature (July~August)
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Ending of Rainy Season (Baiu) during El Nino
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4. East Asian summer monsoon as
demonstrated by regional offsets*

* atmospheric 4C difference from northern

hemispheric *C, IntCal09



14C dates in northern hemisphere

. Atmospheric 14C in summer (tree growing
season) is generally assumed to be
constant throughout the mid-lattude, i.e.
A14C~1 permil.

. Basic assumption for radiocarbon dating.



Historical documents (papers) in Japan have given concordant
14C dates with those expected from the description/sign
(by courtesy of Dr. H. Oda)
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14C wiggle-matching of 9 single-year tree
rings from Miki family house, Tokusima

=K Z (Regional effect= 10 14C—years)

RHC3.2w & Stuiver et al.(1998)
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Wiggle matching of 8 single-year samples from a Korean statue
to the IntCalO4 calibration curve
(Y. Kim et al., 2012)
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14C wiggle matching of 6 five-year treerings from Horyuji
temple, Nara (;5f&F,NRHRJ-E)

RHcal3.2w & IntCal04

1440 N — InEtCaI04E(Re|meir et al.i,2004).
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Data points given for the most probable date



14C dates of Japanese treerings are generally consistent
with INTCAL datasets
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However, significant deviations from
INTCAL are observed ranging up to ~70

14C-years

»>»Deviation in 15t~27d century was first suggested
(M.Sakamoto et al.,2003) using decadal sample of
Japanese cedars for 240BC~AD900.

»>It was confirmed in measurements with
improved precision (+/-20~30 *C-years) for
Japanese cedars and cypresses (5-years treering)
for 1060BC~AD400. (H.Ozaki et al. 2009, 20t
Raiocarbon conference)



240BC~AD400

Sources of INTCAL datasets for 240BC~AD400
from Stuiver and Pearson (Radiocarbon 28, 1986)

Lab code Species Locality Dendro ages used
RC Sequoia Sequoia Natl Park,CA AD265-AD935
1 (36.5N, 118.5W) (decadal)
SC Sequoia Sequoia Natl Park,CA 145BC-AD265
1 (36.5N, 118.5W) (decadal)
BK Oak Southern Germany 495BC-AD45

Japanese tree-rings for 240BC~AD400

Spl Code . .

AMS Lab Species Locality Dendro ages used
HKN Japanese Hakone, Kanagawa 240 BC - AD 200
Paleo Lab cedar Central Honshu Is. (5-years)

NNMSM Japanese Minami-shinano, Nagano 153BC - 400AD
Paleo Lab cypress Central Hoshu Is. (S-years)




We find

» General correlations of wiggles
between Beijing warm time climate
proxies and *C offsets in the
Japanese tree-rings for the periods
between 240BC and 400AD.

»Large offsets take place when
temperature is substantially high,

particularly in the periods of
1~200AD.



> Tan et al.(2003) reported a 2650-years paleo-
temperature reconstruction from stalagmite
lamina thickness in Shihua Cave, Beijing : GRL 30,

1617-1620.
> Effect of rainfall was suggested(F.Ban et alﬁ.2008).
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uncertainty for the proxy records : £5-years



»Synchronous behavior of time series
for Beijing warm time climate
proxies and *C offsets in the
Japanese tree-rings strongly
suggests the effect of Eat Asian
summer monsoon.



East Asian Summer Monsoon (EASM) is
a subdivision of Asian Summer Monsoon
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EASM is seasonal wind (May~August) in East Asia region mainly
caused by the temperature (pressure) difference between Tibet

plateau and Indian and western North Pacific Ocean. From Yuhui
and Chang (2005).
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Rain belt (Baiu/Meiyu) formed by
East Asian summer monsoon
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from weather news, Japan)
July 5tt 2012




EASA front (Rain belt)

Average rainy season (1951-2011)
Okinawa (26N) May 9 - June 23
South Kyushu (~31N) May 3! - July 14
Central Japan (~35 N) June 8 - July 21
North Japan (~39 N) June 14 - July 28
2000 yr ago

How early did it started ? How far did it move ?

Ferrel Cell Hadley Cell

Cold air (heavy) arm, moist air (light)

North South



5. Climates in the Yayoi period and
the role of solar activity



Yayoi period/Yayoi culture

Characterized by wet-rice agriculture, and
use of metal

Particularly, irrigated paddy-rice
technique
|

Requires warm and wet climates



Winter-summer temperature difference
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Spread of wet-rice cultivation In East Asia
and Japanese archipelago
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The ages are estimated from radiocarbon dates of
pottery (soots) and artefacts (stakes etc.) found in
archaeological sites related with rice fields.

The ages of earliest Yayoi periods coincide with those
of the Dolmen appeared in northern Kyushu, Japan.




Pottery used in the earliest stage
of paddy-rice cultivation
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:2730+40 14C BP
(end of 10th c.BC~early 9th c.BC)
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(latter half of 10tk ¢c. BC)



Itazuke | -type pottery, ca.800 BC
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14C dates in N. Kyushu districts in Jomon to Yayoi transition periods

"c ages of pottery (Northen Kyushu)
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Transition age of one pottery-type to another seems to
correlate with climatic changes estimated from 4C records.

Variations of atmospheric "“c production rates in the past 3500 years
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In S5th~ 4th ¢ gc and 3" c. Bc,
Aomori was warm enough to produce rice.

Sunazawa site (~400 Bc) and Taruyanagi site (3rd c.BcC)
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Taruyanagi

Sunazawa

pheric 14c production rate (relative to 100—y running av.)
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High P(14C)
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Beijing summer temperature/precipitation proxy records (Tan et al.2003,
upper) compared with the regional offsets measured for Japanese cedars
and cypress
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From Zielinski G.A. et al. 1994, Record of volcanism since 7000 B.C. from GISP Greenland
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Summary

High summer temperature periods in East Asia for the last
2000 years coincide in most cases with the hi%h solar
activity periods estimated from variations of 4C
production rates.

EL Nino and La Nina tend to occur in low solar magnetic
activity, suggesting more stable climates in the high solar
activity periods than in the low solar activity periods.

Japanese tree-rings for the periods particularly in 1c.
AD~21d ¢, AD show deviations (offsets) in 14C from INTCAL.

Synchronous behavior of time series for Beijing warm time
climate proxies from stalagmites and “C offsets in the
Japanese tree-rings strongly suggests the effect of Eat
Asian summer monsoon in these periods.

Timing of wet-rice cultivation introduced to Japanese
archipelago in 10~9c. BC and its spread to north in 5t" c.
BC ~4th ¢, BC seem to correlate with the climates
estimated from !*C records.



