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Uncertainty Relation  and Weak Value 	




1.	
  Uncertainty	
  Principle	


	
  	
  In	
  the	
  early	
  20th	
  century	
  Bohr,	
  Heisenberg,	
  Schroedinger	
  

and	
  other	
  people	
  hotly	
  discussed	
  possible	
  moDon	
  of	
  
electron	
  in	
  an	
  atom,	
  when	
  it	
  makes	
  a	
  transiDon	
  between	
  
two	
  quantum	
  states.	
  	
  

	
  	
  Burkhardt	
  Drude,　one	
  of	
  Heisenberg’s	
  classmates	
  even	
  
proposed	
  a	
  gamma-­‐ray	
  microscope	
  to	
  seLle	
  the	
  issue.	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  W.	
  Heisenberg,	
  “DER	
  TEIL	
  UND	
  DAS	
  GANZE”(1969)	
  	
  	
  	
  



This motivated Heisenberg to examine the gedanken experiment 
for the error ε(q) in the measurement of the position q of an 
electron and the disturbance η(p) of its momentum p by the 
measurement of q. He concluded that we cannot define 
any  “trajectory of an electron”. 

                W. Heisenberg: Z.Phys.43,172 (1927) 

ε(q)	
  η(p)	
  >	
  	
  	
  	
  	
  h/4π	


“Newton” 
(2012)	




This inequality should not be confused with the  
Kennerd-Robertson inequality (1928), 

              σ(q) σ (p) ≥h/4π (#) 

where σ(q) is the standard deviation of 
the initial wavefunction before measurement.  

Unfortunately many textbooks mixed up these two. 
(Dirac  mentioned only # in his textbook but carefully.)	




Ozawa reformulated Heisenberg’s uncertainty principle, on the 
basis of rigorous measurement theory of the Completely 
Positive (CP) map. 

ε(A) η(B) +ε(A)σ(B)+σ (A) η(B)≥|<ψ|[A,B]|ψ>|/2  

where ε(A) is the error in the measurement of A, η(B) is the 
disturbance of B by the measurement of A.  
  σ (A) and σ(B) are the quantum fluctuations of A and B in the 
state |ψ> i.e., the standard deviations. 

            M.Ozawa: Phys.Rev. A67,042105 (2003)        	




(sketch of proof) 

The quantum measurement theory based on Complete 
Positive Map shows all physical measurement can be 
described by an unitary transformation U defined in 
the Hilbert space H= Hsystem⊗Hdetector of the system 
and detector.  

system	

detector	


M. Ozawa, Ann. Phys. (N.Y.), 311, 350–416 (2004). 
See also Chuang and Nielsen textbook	


|ψ>	

|ξ>	




CP map 

A density operator ρ is called a positive operator, since 
the eigen values are non-negative because of the probabilistic 
interpretation. Any map which sends positive operators to 
positive operators is called a positive map. Obviously 
physical operation Λ to a state has to be a positive map. 

 It is natural to further  demand that Λ is completely positive in the 
sense that 

 (Λ⊗1)(ρ⊗σ) ≥ 0      for all  σ. 

The map Λ should be positive even if there are unaffected 
experimental apparatuses outside your own laboratory.   



This seemingly obvious requirement is actually very 
strong and has been shown to be equivalent to 

(1) Kraus representation 
 ρ	
  	
  	
  Λ	
  (ρ)	
  	
  =	
  ∑	
  	
  i	
  Ai	
  ρA*

i	
  	
  	
  ,	
  

with	
  	
  ∑	
  i	
  A	
  *	
  i	
  Ai=1.	
  The	
  probability	
  of	
  the	
  measurement	
  
outcome	
  i	
  is	
  	
  
	
  	
  	
  	
  	
  	
  pi	
  =	
  	
  Tr[ρEi],	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  Ei:=A	
  *	
  i	
  Ai	
  	
  	
  	
  PosiDve	
  Operator	
  Valued	
  Measure	
  (POVM)	
  	
  

(2)  Existence of the unitary operator in the 
measurement model of the system and detector such 
that  Ai=<ξ|U|i>.    	




Let A be an  observable acting on Hsystem we are going 
to measure. Introduce a detector observable M on Hdetector 

We look at the difference of the time-evolved pointer variable 
M and the  physical observable A before measurement, 

E(A):=U+ (1⊗M)U-A⊗1. 

Define the error ε(A) in the measurement of A by M as 

ε(A)2  =<ψ|⊗<ξ|E(A) 2|ψ>⊗|ξ> 



D(B):=U+ (B⊗1)U-B⊗1 

so that the disturbance  η(B) is defined as 

η(B) 2  = <ψ|⊗<ξ| D(B)2|ψ>⊗|ξ> 

The change of another observable B by the measurement 
of A is 	




0=U+ [B⊗1,1⊗M] U 

=[U+ (B⊗1) U, U+ (1⊗M) U 

=[D(B)+B⊗1,E(A)+A⊗1] 
=[D(B), E(A)]+[D(B), A⊗1]+[B⊗1, E(A)]+[B⊗1, A⊗1] 

[D(B), E(A)]+[D(B), A⊗1]+[B⊗1, E(A)]=[A⊗1, B⊗1]	


|| [D(B), E(A)] ||+||[D(B), A⊗1]||+|| [B⊗1, E(A)]|| 
                                    ≥  || [A⊗1, B⊗1] || 

 where ||#||=|<ψ|⊗<ξ| #|ψ>⊗|ξ>| 

Then	


By the triangular inequality, we have	




The Kennerd-Robertson inequality implies 

ε(A) η(B)  ≥ |<ψ|⊗<ξ| [D(B), E(A)] |ψ>⊗|ξ>|/2 

and so on, which we use three times to obtain 
Ozawa’s inequality, 

ε(A) η(B) +ε(A)σ(B)+σ (A) η(B)≥|<ψ|[A,B]|ψ>|/2 



Recently, Ozawa’s inequality is experimentally verified 
by Hasegawa’s group in Wien  in the neutron spin case. 

J.Erhart et.al: Nature Phys. 8 185 (2012) 

I would like to call your attention to the fact that the error 
and the disturbance are experimentally accessible if 
Ozawa’s definitions are accepted. 
 However, there are some criticism on the definition of error 
and  disturbance.  

 Here I will argue that the definition of error and disturbance 
actually leads to a deeper understanding of quantum 
mechanics that the “true value” of an observable is the weak 
value.     



Preparatories 

Look at the expression for the error 

ε(A)2  = <ψ|⊗<ξ|(U+ (1⊗M)U-A⊗1) 2|ψ>⊗|ξ> 

=  <ψ|⊗<ξ|(U+ (1⊗M2) U |ψ>⊗|ξ> 
  - <ψ|⊗<ξ|U+ (1⊗M)UA⊗1 |ψ>⊗|ξ>-c.c. 
   +<ψ|A2|ψ>, 

Let  

U |ψ>⊗|ξ>=ΣmUm|ψ>⊗|m>, 

where M|m>=m|m> 



<ψ|⊗<ξ|(U+ (1⊗M2) U |ψ>⊗|ξ> 

=Σm<ψ|U+
mm2Um|ψ>              =<ψ|OA

2|ψ> 

<ψ|⊗<ξ|U+ (1⊗M)UA⊗1 |ψ>⊗|ξ> 
=Σm<ψ|U+

mmUmA|ψ>                =<ψ|OAA|ψ> 

For the projection measurement Um, we write 

 OA:=ΣmmUm 

and use OA⊗1 as a substitute of 1⊗M of the pointer.  



Then 

ε(A)2  =<ψ|(OA- A) 2|ψ>. 

Similarly  

η(B)2  =Σm<ψ|([Um,B] 2|ψ>. 

Hasegawa et al. measured the error and disturbance 
for A=σx and B=σy.  OA  is a linear combination of the Pauli 
matrices.  
We parameterize it as  OA=cosφ σx+sinφ σy        	




How can we measure ε(A) and η (B)? 

ε(A)2  =<ψ|(OA- A) 2|ψ> 
=<ψ|OA

2 +A2 – OAA-AOA|ψ> 
=2+<ψ|OA

 |ψ>+<Aψ|OA
 |Aψ>-<(1+A)ψ|OA

 |(1+A)ψ> 

Each term can be evaluated by a sequential 
spin measurement. For example, 

<ψ|OA
 |ψ>=[(I+++ I+-)-(I-++ I--)]/[I+++ I-++I+-+ I--] 

I-+= # of neutrons when the 1st polarizer selects 
down-spin and the 2nd one up-spin. 



|Aψ>=|σxψ> is the 180 degree rotated state of |ψ> 
and|(1+A)ψ>is the +1state along the x-axis. 

All the terms can be evaluated by sequential spin 
measurements with appropriate rotation of the 
quantization axis.  	




ε2(A)=<(U(1⊗M)U+-A⊗1) 2> 

η2 (B)=<(U(B⊗1)U+-B⊗1) 2> 

where M is the meter operator to measure A and U is the 
unitary operator for the system and detector. 
<….> means the expectation value w.r.t. the initially 
prepared state |ψ>⊗|ξ> of the system and detector. 

Hereafter we concentrate on ε2(A). 	






長谷川さん	




 Therefore, they concluded that Ozawa’s version 
of uncertainty relation has been veryfied, while the 
original version is violated. 

 Since then there have been debates on the definition 
of error and disturbance. 

 e.g. ,Yu Watanabe (Ph.D thesis,Univ.Tokyo) 

For the purpose of finding the fundamental limit of 
error/disturbance relation for all possible 
measurements Ozawa’s definition seems most 
natural. Even more, it opens up a new concept 
of quantum mechanics  ---weak value--.  



Very recently Steinberg announced that his group 
also verified Ozawa’s inequality in an optical set-up 
by using measuring the weak value. 

   A. Steinberg (Vaexjo talk, June 2012) 	




The hint can be found in the paper by Lund and Wiseman 
New J. Phys. 12 093011 (2010) quoted in the paper by 
 Ozawa and Hasegawa et al. Ozawa found the same 
formua much earlier 

They gave an expression for the error/disturbance in terms 
of the weak values 

ε2(A)=<(U(1⊗M)U+-A⊗1) 2>=Σδa(δa) 2Pwv(a+δa) 

η2(B)=<(U(B⊗1)U+-B⊗1) 2>=Σδb(δb) 2Pwv(b+δb) 



Here 

Pwv(δa):=Σa<(U(1⊗Π(a+δa))U+(Π(a) ⊗1)> 

is the weak probability, where Π(a)=|a><a| is the 
projection operator to the eigen state |a> of the 
operator A. 

 Note that in general 

<AB>=Σω<AΠ(ω)B>=Σω<AΠ(ω)B> 

=Σωλ*ω (A) λω (B)P(ω) 

can be expressed in terms of the weak values 
which can be measured with an arbitrary acuracy . 



The error ε(A) can also be rewritten as 

ε2(A)=Σ ω,mP（ω,m)|Am-λωm (A)|2	
  

(Hofmann, different from Lund Weisman’s) 

P（ω,m)=|<ω|Km|Ψ>|2	
  

is the probability to obtain the post-selected state 
<ω|Km according to the standard Born’s rule. 
Am is the measured value of A defined by 

Am|m>=M|m>.	
  

λωm (A):=	
  <ω|KmA|Ψ>/<ω|Km|Ψ>	
  

where Km is the Kraus operator: Km=	
  <0|U|m> 	
  



Note that the error can be interpreted as the 
Gaussian mean of the difference of the measured value 
Am and the “true value” of A, λωm (A). 

One can instantly notice that 

λωm (A):=	
  <ω|KmA|Ψ>/<ω|Km|Ψ>	
  

is the weak value proposed by Aharonov and his 
collaborators.	
  	
  

Y.	
  Aharonov,	
  D.	
  Z.	
  Albert,	
  and	
  L.	
  Vaidman,	
  	
  Phys.	
  Rev.	
  LeL.	
  60,	
  1351	
  (1988).	
  	
  



There is a deep connection  between the 
value of physical quantity before measurement 
and the weak value. 
 I will show this in a somewhat axiomatic way assuming 

(1)  Linearity: λ(αA+βB)=αλ(A)+βλ(B )     α,β∈ R 
(2) Product rule when restricted to the Abelian subalgebra:  
          λ(ST )=λ(S) λ(T )         ~classical theory 
for  all S, T∈Vmax 
(3) The prepared state is |Ψ>	
  nothing	
  else;	
  
         λ(|Ψ><Ψ|)=1, 
         λ(|Ψ⊥><Ψ⊥|)=０　, for  all　|Ψ⊥>　s.t.	
  <Ψ⊥|Ψ>=0	
  
(4)The expectation value Ex[A] and the variance Var[A]  
be independent of the choice of  CONS Ω={<ω|} ω,i.e.,  
Vmax∈V(N).  



２.  Formal theory of value of an observable 

2.1 Context (finite dimension) 

Let V(N) be a set of Abelian sub-algebras of all 
observables N  .There may be many choices of the 
sub-algebra V1,V2,V3 ….. ∈ V(N).　 

Choose Vmax∈V(N). We call  Vmax as a context. The 
idea is that the mutually commutable set of observables 
{P,Q,R,….} define a set of simultaneous eigenvectors of 
P,Q,R,….{<ω|}, which corresponds to the resultant 
states after the projective measurements of P,Q,R,…. . 

★ Inspired by Doering’s lecture 2010 at Nagoya	




As Bohr frequently emphasized, the description of 
quantum experiment has to be classical. The word 
“classical” may be paraphrased by the eigenvalues 
of  mutually commuting observables {P,Q,R,….}  
in the maximal subalgebra Vmax 

 The  way of description (=context) of experiments 
 is characterized by the choice of Vmax. 

We are going to define the value of an observable A  
in the state |ψ> in the context Vmax, i.e.,. .{<ω|}. 



Corresponding to the choice of the Abelian sub-algebra  
V1,V2,V3 …. ∈V(N), we have a collection of 
orthonormal basis {<ω|}1, {<ω|}2, {<ω|}3 , …… 

We can think of the collection of the values of an observable 
 A in the state |ψ> in the context V1, V2,V3 …..i.e.,  
{<ω|}1, {<ω|}2, {<ω|}3… 

We fix a maximal Abelian subalgebra Vmax∈V(N) 
for the moment of discussion and therefore the 
context  Ω:={<ω|} ω . We shall find an expression for the 
value of an observable A- λ(A) ∈C, complex number.      	




2.2　Main Theorem 
    We demand that the “value” λ(A)∈C of an observable A∈N 
satisfies the following properties: 
(1)  Linearity:  
          λ(αA+βB)=αλ(A)+βλ(B )     α,β∈ R 
(2) Product rule when restricted to the Abelian subalgebra:  
          λ(ST )=λ(S) λ(T )         ~classical theory 
for  all S, T∈Vmax 
(3) The prepared state is |Ψ>	
  nothing	
  else;	
  
         λ(|Ψ><Ψ|)=1, 
         λ(|Ψ⊥><Ψ⊥|)=０　, for  all　|Ψ⊥>　s.t.	
  <Ψ⊥|Ψ>=0	
  
 The above reqirements via Riez’s theorem lead to 
       λ(A)=Tr[WA]/Tr[W]     ---(1)  λ(1)=1 --- (3) 
with 
       W=a|Ψ><ω|+b|ω><Ψ|	
  ---(2)(3)	
  	
  	
  
where <ω|	
  is a simultaneous eigenvector of Vmax. 



 The formal classical probability theory a la 
Kolmogorov presupposes the probability 
measure P(ω)  and λω (A) the value of a 
physical quantity A for an event ω.  
The expectation value Ex[A] and the variance 
Var[A] are given by 

Ex[A]=ΣωP(ω) λω (A)　,with Ex[1]=1,  

Var[A]=ΣωP(ω)| λω (A)-Ex[A]|2 

 We adopt these expressions also in quantum 
mechanics.　Note that P(ω) is independent of A.  



Correspondence with the classical probability theory. 

ω∈Ω: event (<ω¦∈Vmax∈V(N) )	

dP(ω): probability measure (independent of A) (P(<ω¦) )	

hA(ω): a random variable (real) (λω (A): complex)	


Expectation value and variance:	


 Ex(A)	
  :=	
  ∫ dP(ω) hA(ω)	

Var(A)	
  :=	
  ∫ dP(ω) ¦hA(ω)-Ex(A)¦

2	
  



（４）We demand  the expectation value Ex[A] 
and the variance Var[A] be independent of the choice  
of  CONS Ω={<ω|} ω,i.e., Vmax∈V(N).  

 According to the central limit theorem, the distribution 
of values of observable A approaches the normal  
(Gaussian ) distribution characterized by its mean 
Ex[A] and the variance Var[A]. 

The requirement (４) demands that the distribution 
should be independent of how we measure A but 
depends only on the prepared state |Ψ>. 	




The above requirement uniquely determines both 

W=|Ψ><ω|	
  

and	
  therefore the “value” coincides with Aharonov’s weak value  

λω (A)=Tr[WA]/Tr[W] =	
  <ω|A|Ψ>/<ω|Ψ>,	
  	
  (	
  i.e.,	
  b=0) 

                                                       Aharonov, Albert and Vaidman,    PRL 60,1351 

and the measure,  

P(ω)=¦<ω|Ψ>|2	
  

and therefore we have “derived” the Born formula 
for the expectation value and the variance 
Ex[A]=<Ψ|A|Ψ>	
  
Var[A]=<Ψ|(A-­‐Ex[A])2|Ψ>. 	
  



L[<x|,µ]=Ex[A]-µ(Σx<Ψ|x><x|A|Ψ>-­‐<Ψ|A|Ψ>) 

=ΣxP(x) λx (A)-µ(Σx<Ψ|x><x|A|Ψ>-­‐<Ψ|A|Ψ>) 

where λx (A)=Tr[WA]/Tr[W] 

W=a|Ψ><x|+b|x><Ψ| 

Introducing the lagrange multiplier µ to ensure the 
completeness relation, we demand the variation of 
the lagrangian L[<x|,µ] w.r.t. <x| and µ vanish for all  
Observable A   

Outline of proof	




Idea	
  of	
  the	
  proof:	
  if	
  P(ω)=¦<Ψ|ω>|2	
  

Ex[A]=ΣωP(ω) λω (A)	
  =Σω	
  ¦<Ψ|ω>|2[<ω|A|Ψ>/<ω|Ψ>]	
  
=	
  Σω<Ψ|ω><ω|A|Ψ>	
  
=<Ψ|A|Ψ>	
  

Var[A]=ΣωP(ω) |λω (A)|2	
  =Σω	
  ¦<Ψ|ω>|2|<ω|A|Ψ>/<ω|Ψ>) |2	
  
=	
  Σω<Ψ|A|ω><ω|A|Ψ>	
  
=<Ψ|A2|Ψ>	
  
do	
  not	
  depend	
  on	
  {<ω|}	
  i.e.,	
  the	
  choice	
  of	
  Vmax∈V(N). 

Note	
  that	
  	
  	
  P(ω)=¦<Ψ|ω>|p	
  would	
  not	
  work	
  for	
  p≠2!	
  	
  

The	
  key	
  is	
  the	
  completeness	
  relaDon	
  Σω|ω><ω|=1.	
  

c.f.	
  	
  	
  	
  	
  J.Phys. A;43 025304 (2010) with Shikano	
  	
  



The weak value λω	
  (A) is a fundamental quantity in  
quantum mechanics which is experimentally accessible 
only slightly  disturbing the prepared state  
 e.g., by the weak measurements with an arbitrary 
 accuracy in principle. For me, at least, it is almost a 
“physical reality” in the sense of EPR.  

The probability measure P(ω)=|<ω|Ψ>|2	
  is 
not an axiom any more but a consequence of quantum 
mechanics and the probability theory. 

λω (A) is interpreted as a value of A in the context 
of the pre-selected state |Ψ>	
  and the post-selected states 
{<ω|} of the intended projective measurements of a 
maximal set of commuting observables Vmax∈V(N). 



Since an event ω	
  is identified with a consequence <ω|of 
measurement	
  of	
  Vmax	
  , P(ω)=|<ω|Ψ>|2	
  is interpreted 
as 	
  its relative  frequency. 

 From the formula: 

Ex[A]=ΣωP(ω) λω (A)	
   

λω	
  (|a><a|) can be interpreted as a conditional 
probability to reach <ω|	
  via	
  |a><a| with the initially 
prepared	
  state	
  |Ψ>.	
  In	
  general	
  λω may be complex. 	
  	
  

	
  J.Phys. A;43 025304 (2010) with Shikano	
  	
  



Going back to the original motivation of the value of an 
observable before measurement （“真値”） 
we just show an example: 

	
  ξ(t):=<x|X(t)|Ψ>/<x|Ψ>,	
  

where	
  X(t)	
  ,0≤t≤T	
  is	
  the	
  posiDon	
  operator	
  of	
  a	
  
parDcle.	
  <x| is the eigen state of X(T) with

the eigen value x.	
  	


	

x	


ξ(t)	


t=T	




We can ask the following counter-factual question. 

We are in a certain initial state and  
know the value of X as x by measuring X of 

at t=T.

What the value of X(t) would be before T ?


We can answer in an experimentally verifiable way.




☆ The weak value is almost a wave function itself 
 For the case that the momentum is conserved, 

η(t):=<x|P(t)|Ψ>/<x|Ψ>=iΨ’(x)/Ψ(x) 

See the experiment which shows a trajectory of photon 
by weak measurements of its transverse momentum 

“Direct measurement of the quantum wavefunction” 	

by  Lundeen et al. (Recent Issue of Nature), 

A remark: 



Lundeen 
et al. 	




There have been a hot debate in Japan  over the “true value” 
of an observable before the post-selection.  
Some people are still reluctant to accept the assertion that 
such a thing exists and actually coincides with the weak value. 
 One of the reason may be that the weak value depends 
on the choice of the post-selected state by an observer. 
This does not fit the “objectivity” of the “truth”. 

 I would say that the weak value is the subjective value 
of objective physical quantity. In contrast the expectation value 
is an objective value. 
 Note that we cannot assign objective value for all the 
objective physical quantities as Kochen and Specker proved.    	




Kochen-Specker theorem (’67) (c.f. Zeilinger’s recent paper) 

We cannot assign a value of all physical quantities  
independently of how we measure it for dim(H)≥3. 

Example by Mermin (4 dim) 

σx⊗1      1⊗σx     σx⊗σx 

1⊗σz       σz⊗1      σz⊗σz 

σx⊗σz  σz⊗σx     σy⊗σy  

1	


1	


1	


1             1            -1	


cannot assign 
the eigenvalues 
±1 consistently 

Eigenvalues are 
only non-contextual 
values 

Mermin ‘90	




The utmost important thing is that the “true value” of 
an observable before measurement can be experimentally 
verified  by weak measurements. 

  The value of observable certainly exists before 
measurement. The measurement only discovers 
it.   



Mach-Zehnder interferometer 

A photon injected from A goes out of E only by interference	


A	


E	


     BS	

mirror	




mirror beam-splitter 
A B 

C E 

F D 

D’ 

2 

1 

3 

Double MZ interferometer 

Mitchison, Jozsa and Popescu   arXiv 0706.1508 

Click! 



A is pre-selected　　　　photon would pass E 
                                         (interference) 

photon should have passed        D is post-selected 
(which way) 

We can see 

We can know which-way, while  
interference effect is manifested!   
(Aharanov)	




A B 

C E 

F D

D’ 

2 

1 

3 

Verfication by a weak mesaurement  

Click! 

Insert a tilted slide glass      in the path C 
The optical axis will shift.	
 （similar for E）	


shift	




4.     Summary of the 1st part 

  I reviewed the uncertainty relation by Ozawa and its 
recent verification by Wien group led by Hasegawa on the 
emphasis,  

(1) The mathematical background (CP map) 
(2) how the original mathematical expression 
     have been made operational for the actual experiment. 

I think both are very innovative! Furthermore this leads 
to an important concept of the weak value.    



         Summary of the 2nd part 

Combining quantum mechanics and the formal 
probability theory we have shown that the context  
dependent (subjective) value of (objective )observable A

 is the weak value  
 λω	
  (A) :=	
  <ω|A|Ψ>/<ω|Ψ>	
  
and the probability measure is given by  
Born’s rule: 
  P(ω)=|<ω|Ψ>|2,	
  

where |Ψ>	
  is	
  the	
  	
  iniDal	
  state	
  and	
  <ω|	
  is	
  the	
  
post	
  selected	
  state.	
  



 The value of observable appears only after 
measurement not before in the Copenhagen 
interpretation. 
  However,  

 Carl Friedrich von Weizsäcker denied that  
the Copenhagen interpretation asserted:  
"What cannot be observed does not exist".  
He suggested instead that the Copenhagen  
interpretation follows the principle: 
 "What is observed certainly exists;  
about what is not observed we are still free 
 to make suitable assumptions. 



Thank you for your attention!	



