Seminar at ICRR 16 April 2010

Akira Ukawa University of Tsukuba

Present and Future of Lattice QCD

My personal feeling

- Lattice QCD is finally turning a corner in the last couple of years.
- Previously, despite the premise, it remained an approximate method requiring extrapolations in a number of ways (quenching, unphysically heavy quark masses, etc).
- Progress over the years has been removing these restrictions, and it is now becoming a *real first principle method*, not only in principle but also *in practice*, for actually calculating physical quantities *at the physical point on physically large lattices*, *i.e.*, *Nature*.

What I wish to do today

Review recent progress and try to share this feeling with you

- Algorithmic progress
- Flavor physics
- High temperature/density QCD
- No more nuclear physics?
- Computer trends -if time allows-
- Conclusions

Algorithmic progress

"fulfilling Yukawa's dream of 1934 in a refined way"

□ Anticipated effect of *chiral logarithm* at zero quark mass

$$\frac{m_{\pi}^2}{m_{ud}} \propto 1 + \frac{2Bm_{ud}}{\left(4\pi f\right)^2} \log \frac{2Bm_{ud}}{\mu^2} + \cdots$$

- □ However, extrapolation difficult to control since
 - Convergence radius a priori not known
 - Have to determine a number of unknown constants

Key observation

M. Luescher (2005)

Strategy :

- Separate UV and IR modes of quark fluctuations
- Use separate time step to UV and IR modes
- Numerically found:

$$F_{gluon} >> F_{quark,UV} >> F_{quark,IV}$$

so take

 $\delta \tau_{gluon} << \delta \tau_{quark,UV} << \delta \tau_{quark,IR}$

i.e., one can enlarge the time step for the most compute intensive IR quark force, leading to large acceleration of the algorithm.

15

This is physics.

Recent large-scale Nf=2+1 calculations

Features

- Fully incorporates dynamical effects of up, down, strange sea quarks, hence called "Nf=2+1"
- Pion mass reaching down to even attempting the physical point

 $m_{\pi} \approx 200 - 300 MeV$ $m_{\pi} \approx 140 MeV$ $m_{\pi} L \approx 3 - 4$

attice size to avoid finite size effects.

Collaborations	action	а		mπ
		(fm)	(fm)	(MeV)
MILC	staggered	0.06	4.0	180
PACS-CS	wilson-clover	0.09	2.3	155
BMW	wilson-clover	0.09	4.0	190
RBC-UKQCD	domain-wall	0.09	4.0	290
JLQCD	overlap	0.11	2.8	320
ETMC(Nf=2)	twisted mass	0.07	3.0	250 16

Strong coupling constant – status -

Flavor physics

B_{K} over the years

CKM unitarity with lattice inputs 2009

Comment on Re(ε'/ε)

- Failure of the previous lattice calculation (2003) indicates
 - Inadequacies of Quenched approximation
 - Failure of SU(3) chiral perturbation thoery
- Steady progress since then

 $\operatorname{Im} A_2 = \operatorname{Im} A_0$ ω $\overline{\operatorname{Re} A_0}$ $\operatorname{Re} A_2$

Finite volume framework for
$$K \rightarrow \pi \pi$$
 amplitude
C. Lellouche and M. Luescher (2001)
Finite-size formula for direct $K \rightarrow \pi \pi$ amplitude

$$A_{physical}(K \rightarrow \pi\pi)^2 = 8\pi \left(\frac{E_{\pi\pi}}{p}\right)^3 \left\{ p \frac{\partial \delta(p)}{\partial p} + q \frac{\partial \phi(q)}{\partial q} \right\} \left[(K |H_w| \pi\pi)_{tartice} \right]^2$$
Physical amplitude

$$p^2 = E_{\pi\pi}^2 / 4 - m_{\pi}^2, \quad q^2 = (pL/2\pi)^2$$
Enite volume lattice amplitude

$$p^2 = E_{\pi\pi}^2 / 4 - m_{\pi}^2, \quad Z_{00}(1;q^2) = \frac{1}{\sqrt{4\pi}} \sum_{n \in \mathcal{X}^3} \frac{1}{n^2 - q^2}$$

$$\delta(p) = n\pi - \phi(q) \quad \text{Phase shift}$$
Requires $E_K = E_{\pi\pi}(L)$

Hot/Dense QCD

Nf=2+1 Phase diagram at zero density

Status of finite-density QCD

The "sign problem", i.e., large phase fluctuation of the quark determinant detD for non-zero chemical potential

$$Z_{QCD} = \int \prod dU_n \det D[U] \exp\left(-S_{gluon}[U]\right)$$

- Slow but steady progress over the years for *not too large baryon density:*
 - Estimate of the end point of the 1st order line on the T- μ plane

2-parameter reweigting method: Z. Fodor, S. Katz, JHEP 0404 (2004) 050 Nf=2+1, Nt=4

$$(T_E, \mu_E) = (162 \pm 2, 360 \pm 40) MeV$$

Taylor expansion method: C. Allton etal, Phys.Rev. D71 (2005) 054508 Nf=2, Lt=4

Canonical ensemble simulation ?

$$Z_{grand \ canonical}\left(T, m_{q}, \mu_{B}\right) = \sum_{n} e^{n_{B}\mu_{B}/T} Z_{canonical}\left(T, m_{q}, n_{B}\right)$$

$$Z_{canonical}\left(n_{B},T,m_{q}\right) = \int \left[dU\right] \left[\int_{0}^{2\pi} d\varphi \ e^{-i3n_{B}\varphi} \ \det D\left(U,m_{q},\mu=i\varphi T\right)\right] e^{-S_{gluon}(U)}$$

Projects out the states with baryon number n_B

- Vital to accurately estimate the projection of the quark determinant
- □ Some previous attempts:
 - Exact evaluation of the projection;
 computationally expensive for large lattices
 Forcrand-Kratochvila
 hep-lat/0602024
 - Saddle point approximation;
 Controlling the approximation is not easy
 ArXiv 0804.3227

Anyi Li et al @Lattice 2009 Expand logdetD since detD is an extensive quantity

Nuclear physics
Two avenues from quarks to nuclei
 Effective theory approach Extract nucleon two-body, three-body,, potentials via lattice QCD simulations Use the potentials in conventional nuclear physics calculational schemes S. Aoki, T. Hatsuda, N. Ishii (2007) based on the method developed by N. Ishizuka et al (2005)
 Direct approach Calculate multi-quark Green's functions and directly extract the properties of nuclei, e.g., binding energies etc Y. Kuramashi, M. Fukugita, A. Ukawa et al for nucleon-nucleon scattering lengths (1993) T. Yamazaki, Y. Kuramashi, A. Ukawa for He4, He3 (2009)

 $\phi(r) = \frac{1}{L^3} \sum_{\vec{x} \in L^3} \langle 0 | N(\vec{x} + r) N(\vec{x}) | NN \rangle$

Extraction of potential from an effective Schrodinger eq.

$$V(r) = E + \frac{1}{2\mu} \frac{\nabla^2 \phi(r)}{\phi(r)}$$

- Impact and prospects
 - Derivation of the hard core
 - Extension to hyperon-nucleon potential etc

Quenched QCD 32⁴ lattice

$$m_{\pi} / m_{\rho} = 0.595$$

Solution Here and the second strength in the second strength is a second strength is a second strength in the second strength in the second strength is a second strength in the second st
T. Yamazaki, Y. Kuramashi, A. Ukawa, arXiv:0912.1383 (2009)
Methodology
Define He operator in terms of quark fields
$p(x) = \varepsilon^{abc} \left(u^a(x) C \gamma_z d^b(x) \right) u^c(x)$
$n(x) = \varepsilon^{abc} \left(d^a(x) C \gamma_{-\mu} b^b(x) \right) d^c(x)$
$He^{4}(x) = spin projection \left(p(x)p(x)n(x) \right) $ By Rev. 158, 907 (1968)
$P(x) = \text{spin projection} \left(p(x) p(x) n(x) \right) = P(y) \text{ (130, 307 (1306)})$
Calculate He Green's function to extract the binding energy
$\langle 0 He^4(t) He^4(0) 0 \rangle$
$G_{He^4}(t) = \frac{(0 10 (0) 0)^2}{(0 0)^2 / 0 0 (0) 0)^2}$
$\langle 0 p(t)p(0) 0\rangle \langle 0 n(t)n(0) 0\rangle$
$\xrightarrow{t \to \infty} Z \exp\left(-\left(M_{He^4} - 2m_p - 2m_n\right)t\right)$
$-B_{II}$ Binding energy of He4 nuclei
<i>He</i> ⁻ 35 35 39

Three difficulties

Statistical error

$$\frac{noise}{signal} \propto \frac{1}{\sqrt{N_{meas}}} \exp\left(4\left(m_N - \frac{3}{2}m_\pi\right)t\right)$$

Use heavy pion and large statistics in quenched QCD

Factorially large number of Wick contractions of quark operators

$$He^4 = p^2 n^2 = (udu)^2 (dud)^2 = u^6 d^6$$

Use symmetries to remove identical contractions

He3 5!x4!=2880 He4 6!x6!=518400

Identification of bound states Bound state or scattering state?

Use a set of spatial sizes

	Symr p⇔p,	netries n⇔n in He operator
	Isospi Simu u⇔u i	n all p ⇔all n Itaneous calculation of two contractions n p or d⇔d in n
Re	sult of	reduction:
	He	$\frac{518400}{2_{ISO} \cdot 2_{u \leftrightarrow u}^{2} \cdot 2_{d \leftrightarrow d}^{2} \cdot (2_{p \leftrightarrow p} \cdot 2_{n \leftrightarrow n})_{src, sin k}^{2}} \xrightarrow{\text{w/o double count}} 1107$
	He3	$\frac{2880}{2^2 \cdot 2 \cdot (2)^2} \xrightarrow{\text{w/o double count}} 93$

Bound state or scattering state?

Measurement for a single spatial volume cannot distinguish a bound state from scattering states

 M_{He} -4 m_N

0

Use multiple volumes for measurements

 $1/L^{3}$

6	sin	nulation					
	Quenched calculation						
	• Iwasaki gauge action $\beta = 2.416 \ 1/a = 1.54 \text{GeV}$						
	 Tadpole-improved Wilson quark action 						
	$m_{\pi} = 0.8 \text{GeV}, \ m_{N} = 1.62 \text{GeV}$						
	Lattice sizes and #measurements						
	L	L(fm)	#conf	#meas			
	24	3.1	2500	2			
	48	6.1	400	12			
	96	12.3	200	12			
	Sour	ce smearing	$q(\vec{x}) = A \exp(-B \vec{x})$				
	=24						
(0.5, 0.5), (1.0, 0.4) for L=48, 96							
$S_{}S_{S_{$							
		~]		43			

Computer trends and ILDG

S Future: petascale computing (2010-2015)
 Peta-scale computing is around the corner "National" projects USA: Bluewater, BlueGene/Q, Japanese Petaflops Project clusters based on commercial multi-core CPU (Intel_AMD)
 New projects for lattice QCD QPACE Project (QCD Parallel Computing on the CELL) CELL-based cluster/200Tflops in 2009 GPGPU? Many-core high speed graphic cards/software development
O(10-100) enhancement will allow physical point simulation on larger volumes (L=3fm->6fm)/ smaller lattice spacings (a=0.1fm->0.05fm)

Status of the Japanese Next Generation Supercomputer Project

Political turmoil last year

- 16 September:
 - Hatoyama Cabinet took office (first real change of power since 1951)
- 18 September:
 - "Government Revitalization Unit (GRU)" is set up; starts reexamination of F2010 budget
- 13 November:
 - GRU Working Group, after an 1-hour public hearing, recommends suspension of the Supercomputer Project ; many science & technology budget also recommended cut.
- Late November :
 - appeals by many academic societies and universities against the cut
- 8 December:
 - Science and Technology Council recommends continuation of the Project
- 16 December:
 - Government decides to proceed with the Project

Modification of the project
 Machine R&D schedule Original target date: November 2011 New target date: June 2012
 New target of the project "High Performance Computing Infrastructure (HPCI) Project" Buildup of HPCI in Japan by connecting the next- generation supercomputer and other supercomputers in Japan Buildup of "Consortium" for the best effective use of HPCI resources in Japan

Building construction

Compute node

- □ CPU: SPARC64TM VIIIfx
 - 8 core 128Gflops
 - DDR3 Memory 64GB/sec
 - Power consumption 58W (water cooled at 30°C)
 - 45nm CMOS

Photo courtesy FUJITSU Limited

Rack prototype

- 96 nodes (24 system boards) and system disk
- □ 796mm × 750mm × 2060mm

Software and job environment

Conclusions

Where we stand now

- Realistic calculation directly at the physical point is finally reality
 - Fruit of continuous effort over 25 years toward: Better physics understanding
 Better algorithms
 More powerful machines
- Change of philosophy from "simulation" to "calculation"
 - If lattice spacing sufficiently small,
 - No more approximations/extrapolations
 - Gluon configuration produced is Nature itself

Where do we go

- Expect that the fundamental issues of lattice QCD as particle theory makes major progress over the next five year range
 - Single hadron properties and fundamental constants
 - Precision flavor physics (<1%) and old issues such as $K \rightarrow \pi \pi$ decays
 - Hot/dense QCD with chiral lattice action on large lattices
- Vast area of multi-hadron systems/atomic nuclei lies in wait for nuclear physics colleagues to explore
 - Nuclear force from lattice QCD
 - Exotic nuclei with unusual n/p ratios/strangeness etc
 - Even direct computation bypassing nuclear theory!

Supplementary slides

6	u/d c	uark mas	ss differer	nce
Har D	ndling of E Use Dash obtain m	EM effects is the ien's theorem te "/m _d from K ^o , K	e issue o estimate the (+ masses	EM effects, and
Latt	ice09	$m_u(MeV)$	$m_d(MeV)$	m_u / m_d

- MILC 1.96 ± 0.17 4.53 ± 0.27 0.432 ± 0.040 Aubin et al 1.7 ± 0.3 4.4 ± 0.5 0.39 ± 0.5
- Calculate EM effects by coupling (quenched)QED
 RBC/UKQCD@Lattice 2009 "study of isospin breaking effects"

Status of D decay constants

72

Lattice QCD has to resolve the systematic uncertainty:

- HISQ action for HPQCD
- Clover action for FNAL/MILC