ICRR seminar, Oct 20th 2021

Particle astrophysics of the Galactic Center

Shunsaku Horiuchi

Office o Science

Aim

Fermi-LAT data reveals an excess of gamma-ray photons arriving from the Galactic Center direction. What is its origin?

Various possibilities

- Backgrounds?
- New astrophysics?
- New physics (dark matter)?

I will discuss

- What is the excess
- Studies of its spatial properties
- Implications for origins

Fermi-LAT

Launched in June 2008

Large area telescope (LAT)

- Primary instrument of Fermi, consists of:
 - Anticoincidence
 - Pair conversion detector
 - Calorimeter
- 20 MeV 500 GeV
- Field of view 2.4 sr at 1 GeV
- PSF < 1 deg above 1 GeV

Data and analysis tools are public: http://fermi.gsfc.nasa.gov/ssc/data/

The Gamma-ray sky

Galactic coordinates

...and even on larger scales

Fermi bubbles

WMAP/Planck haze

Radio lobes

Galactic Center Excess (GCE)

At the Galactic Center

Goodenough & Hooper (2009) Vitale & Morselli (2009) Hooper & Goodenough (2011) Hooper & Linden (2011) Boyarsky et al (2011) Abazajian & Kaplinghat (2012) Gordon & Macias (2013) Macias & Gordon (2014) Abazaiian et al (2014, 2015) Calore et al (2014) Daylan et al (2014) Selig et al (2015) Huang et al (2015) Gaaaero et al (2015) Carlson et al (2015, 2016) de Boer et al (2016) Yang & Aharonian (2016) Fermi Coll. (2016) Horiuchi et al (2016) Linden et al (2016) Ackermann et al (2017) Macias et al (2019) Bartels et al (2018) Balaji et al (2018) Zhong et al (2019) Chang et al (2020) Buschmann et al (2020) Leane & Slatyer (2020) List et L (2020) Di Mauro (2020) Burns et al (2020)

At mid-lat

Hooper & Slatyer (2013) Huang et al (2013) Zhou et al (2014) Daylan et al (2014) Calore et al (2014)

An unexplained excess

• Found by morphological template fitting:

$$data_i = \sum_j c_{ij} template_{ij}$$

• New approaches, e.g., wavelets (Balaji et al 2018)

Modeling strategy: template fitting

+

Data

Known sources

New sources, e.g., dark matter

Properties of the GCE

Main features:

- Spectrum: peaks at a few GeV
- Peak flux: ~10⁻⁽⁶⁻⁷⁾ GeV cm⁻² s⁻¹
- Gamma-ray luminosity: ~10³⁷ erg/s
- Spatial morphology: ~r^{-2.4}
- Statistical significance: \sim 30–60 σ
- Many systematic checks

Abazajian & Kaplinghat (2012)

Shunsaku Horiuchi

FERMI-LAT OBSERVATIONS OF HIGH-ENERGY 7-RAY EMISSION TOWARD THE GALACTIC CENTER

from the inner ~1 kpc surrounding the GC, and that from the rest of the Galaxy. A catalog of point sources for the $15^{\circ} \times 15^{\circ}$ region is self-consistently constructed using these IEMs: the First *Fermi*-LAT Inner Galaxy Point Source Catalog (1FIG). The spatial locations, fluxes, and spectral properties of the 1FIG sources are presented, and compared with γ -ray point sources over the same region taken from existing catalogs. After subtracting the interstellar emission and point-source contributions a residual is found. If templates that peak toward the GC are used to model the positive residual the agreement with the data improves, but none of the additional templates tried account for all of its spatial structure. The spectrum of the positive residual modeled with these templates has a strong dependence on the choice of IEM.

Is it dark matter?

Spectral supporting evidence

Spectrum consistent with thermally produced WIMP annihilations

Is it dark matter?

Spatial supporting evidence

Spatial morphology consistent with WIMP dark matter

Dark matter interpretation

DM

SM

Dark matter

"Vanilla" dark matter works: annihilation of thermally produced WIMPs

But wait!

Similarity with a "vanilla" dark matter signal is tantalizing! → Hundreds of papers on this possibility

• Nature is often creative and we need to scrutinize this

THE PULSAR HYPOTHESIS & SPATIAL TESTING

Galactic high-energy sources

\rightarrow Multiple source classes injecting $\sim 10^{38}$ erg/s

Pulsars

Millisecond pulsars

Millisecond pulsar morphology

Bulge: $\sim 1/3$ mass of the Galaxy and very old (> 8 Gyrs)

Shunsaku Horiuchi

Bland-Hawthorn & Gerhard (2017)

The hypothesis

(Use Freudenreich 1998)

Baseline background model

Background I

Strategies

- 1. <u>Minimalist</u>: use multi-wavelength e.g. gas maps
 - Empirical
 - ✓ Most of gamma is gas-dependent
 - X Does not capture salient variations of cosmic-ray injection and propagation

Atomic HI is measured by 21-cm emission – Molecular H2 is traced by the 2.6mm line of CO –

Background II

Strategies

- 1. Minimalist: use multi-wavelength e.g. gas maps
- 2. <u>Empirical model</u>: data-driven and annuli to account for desired flexibility
 - Empirical
 - Accounts for some cosmic-ray injection and propagation variations (annuli)
 - \checkmark Can be tuned to the Galactic Center
 - X Time consuming

Background III

Strategies

- 1. <u>Minimalist</u>: use multi-wavelength e.g. gas maps
- 2. <u>Empirical model</u>: data-driven and annuli to account for desired flexibility
- 3. <u>Fermi diffuse map</u>: built for all-sky starting with many templates and annuli
 - ✓ Simple (hard work done!)
 - Accounts for some cosmic-ray injection and propagation variations (via annuli)
 - X Somewhat of a black box for user
 - X Fixed to (usually) older data
 - X Constructed not dedicated for the Galactic Center

Acero et al (2016)

Background IV

Strategies

- 1. Minimalist: use multi-wavelength e.g. gas maps
- 2. <u>Empirical model</u>: data-driven and annuli to account for desired flexibility
- 3. <u>Fermi diffuse map</u>: built for all-sky starting with many templates and annuli
- 4. <u>Model builder</u>: numerically solve the diffusion equation
 - ✓ Allows physical parameter choices
 - ✓ Can be tuned to the Galactic Center
 - X Many parameters not well known
 - X Still poor resolution

e.g., Galprop; Moskalenko & Strong (1998)

Improve background modeling

Previous approach

Single gas-map model assuming circular motion and interpolation between edges, pre-fitted in rings

New approach

Pohl et al (2009)

- Gas-flow model from SPH simulations which include the bulge + disk potential
- Split gas-map model into rings

New background model much better

Significant improvement observed by hydrodynamical templates

Detection!!!

Shunsaku Horiuchi

Macias et al (2018)

nature astronomy

Galactic bulge preferred over dark matter for the Galactic centre gamma-ray excess

nature astronomy

The Fermi-LAT GeV excess as a tracer of stellar mass in the Galactic bulge

We demonstrated that the stellar bulge model provides a significantly better fit (> 10σ) to the data than the DM-emission related Einasto or contracted NFW profiles. Hence the GCE appears to simply trace stellar mass in the bulge, not the dark matter density squared (although the actual DM profile is sufficiently uncertain that this possibility cannot be entirely excluded). What

Fit in central 40x180 degrees, which facilitates the fitting of gas template rings (x3) and provides leverage to disentangle components.

Bartels et al (2018)

SkyFACT = Sky Factorization with Adaptive Constrained TemplatesCombines adaptive spatial-spectral template regression and image reconstruction to account forShunsaku Horiuchismall-scale model inaccuracies.Storm et al (2017)

How are the two distinguished?

Systematics

Many astrophysical systematics

1. Bulge model

Shu

- 2. Fermi bubble model
- 3. Background (IC models)
- 4. Background (gas maps)
- 5. Point source catalogs
- 6. Galactic disk masks

Significance of NFW² for bulge and IC model combinations

Macias et al (2018, 2019)

Systematics

Gas maps: using the gas maps used by the Fermi Diffuse models yield the same conclusions

Base	Source	$\log(\mathcal{L}_{\text{Base}})$	$\log(\mathcal{L}_{\text{Base+Source}})$	$\mathrm{TS}_{\mathrm{Source}}$	σ	Number of
1.11. (11.11.1. (1.1.1.1.1.1.1.1.1.1.1.1						source parameters
baselineNB+Boxy	NFW	-172005.9	-171999.0	13.8	1.4	19
baseline+NFW	NB+Box	y -172167.9	-171999.0	337.8	18.3	2×19
baseline*	NFW	-173565.0	-172929.2	1272	34.6	19
$baseline^{+}NFW$	NB+Box	y -172929.2	-172533.0	792.4	28.2	2×19
baseline [*] +NB+Boxy	NFW	-172547.4	-172533.0	28.8	3.0	19
Point sources: using	none or the	2FIG point so	urce catalog yiel	d the sam	ie con	clusions
baseline	2FIG	-172461.4	-170710.5	3501	37.3	81×19
baseline+2FIG	Boxy	-170710.5	-170536.3	348.4	18.7	19
baseline+2FIG	NFW	-170710.5	-170484.6	452	19.9	19
baseline+2FIG	NB	-170710.5	-170470.5	480	20.6	19
baseline+2FIG+NB	NFW	-170470.5	-170387.8	165	11.1	19
baseline+2FIG+NB	Boxy	-170470.5	-170317.2	306.6	17.5	19
baseline-2FIG+NB+Be	oxy NFW	-170317.2	-170313.5	7.4	0.5	19
Galactic plane mask	using a b	< 1 deg mask	yields the same	conclusic	ons	
baseline	NFW -43	0824.6 -430	696.9	255 14	4.4	19
baseline	Boxy -43	0824.6 -4300	626.1	397 18	3.5	19
baseline	NP -43	0824.6 -430	189.9 1	.269 33	5.6	22×19
baseline+NP	NFW -43	0189.9 -430	097.0	186 12	2.0	19
baseline+NP	Boxy -43	0189.9 -4300	035.8	308 16	3.1	19
baseline+NP+Boxy	NFW -43	0035.8 -4300	026.3	19 2	2.0	19

Dark matter systematics

Kuhlen et al (2012)

IMPLICATIONS

Improved sensitivity to dark matter

We addressed a major systematic, which allowed us to realize the potential of the Galactic Center to constrain dark matter

• Impacts of NFW slope [0.5,1.5] & sphericity

Impacts of background modeling

• Impacts of core (1 kpc) & sphericity

Impacts of background modeling

Tests thermal dark matter out to ~500 GeV

Millisecond pulsar insights

Some insights:

- 1. Spectrum similar to pulsars
- 2. Of order $O(10^{4-5})$ needed
- 3. Gamma-ray luminosity seems to scale with mass

Bulge Both nuclear and boxy $\sim 3 \times 10^{27} \, erg/s/M_{\odot}$

Song et al (2021), Also Macias et al (2018), Bartels et al (2018)

Gamma / mass ratio

M31

Extended (at 4σ) and does not obviously correlate with gas density. Ratio high (may include some disk emission and sources)

Song et al (2021), Also Macias et al (2018), Bartels et al (2018)

Gamma / mass ratio

Globular clusters

30 detections so far, shows higher γ -ray efficiency given their mass

Fermi (2010); see also Song et al (2021)

Millisecond formation scenarios

Importance of binaries

Millisecond pulsars form in binaries, going through a X-ray binary phase (recycling scenario), and this binary can be:

- Primordial: scales ~ stellar mass
- Dynamically captured: scales ~ encounter rate

c.f. X-ray binaries

Departure from linear scaling:

 10-100 times more common in globular cluster than in the disk

Verbunt & Lewin (2006)

 In M31, ~25% show dynamic origin

Voss & Gilfanov (2007)

Millisecond formation scenarios

Importance of binaries

Millisecond pulsars form in binaries, going through a X-ray binary phase (recycling scenario), and this binary can be:

- Primordial: scales ~ stellar mass
- Dynamically captured: scales ~ encounter rate

Milky Way bulge has low Γ

Globular clusters and M31 bulge have larger Γ

Gamma-ray correlates with encounter rate

Eckner et al (2017); also Hui et al (2011)

Implementation to Milky Way

Millisecond pulsars in the bulge

= primordial + dynamical (modeled after globular clusters)

Using similar morphological modeling, the primordial powers 30-70% of bulge γ rays *Macias et al (2019)*

Backed by population synthesis studies e.g., Gonthier et al (2018)

 \rightarrow Millisecond pulsars consistent with bulge-correlated γ -rays

FUTURE THOUGHTS

How to further test between pulsar vs dark matter origins?

Find the pulsars To directly confirm the source

→ Multiwavelength search campaign

Compare other regions To rule in/out the hypotheses

- → Improved dark matter distribution
- → Compare to other regions & limits

Understand transport Of cosmic rays in the Galactic Center

→ Improved background, pulsar behavior, leptonic predictions

point source vs diffuse source

Dark matter annihilation

Astrophysics (eg pulsar)

Photon count distribution look different

Lee et al (2016) also Malyshev & Hogg (2011), Bartels et al (2016), Zechlin et al (2016)

Photon count distribution fit result

- Smooth should absorb dark matter
- Point-source should absorb astrophysical objects

But...

- Smooth: ~0% !
- Point sources: ~8.7% !

Also, if point sources are not added, smooth becomes ~8%

 Preference for subthreshold point sources over smooth dark matter
Could be faint pulsars

> Lee et al (2016) See also Bartels et al (2016)

But...challenges

- Ultra-faint point population is degenerate with a smooth diffuse source
- Injected dark matter erroneously absorbed by sub-threshold point-source model
- Impacts of mismodeling diffuse model appears problematic

Leane & Slatyer (2019, 2020) Also Chang et al (2019), Zhong et al (2019), Buschmann et al (2020), Shunsaku Horiuchi

Can be confident there's substantial point sources
Still allow DM signal (more work needed)

TeV counterparts

- Consider IC due to relativistic et generated by pulsars.
- Quantify that spatial morphology of IC reveals source distribution

Deheng Song

CTA sensitivity

Shunsaku Horiuchi

Macias et al 2021

Low-energy counterparts

The 511 keV excess

- There are striking parallels:
- Large, tens of degrees
- Strongly centrally peaked

Knodlseder et al 2005 Siegert et al 2016

 Can it be powered by positrons generated by millisecond population?

Low-energy counterparts

Spatial morphology

We see strong parallels with the GeV:

- When mutually exclusive, dark matter and bulge are both detected
- When simultaneously included, the dark matter significance become negligible

Siegert et al (2021)

Baseline model	Add. source	ΔAIC_{511}	ΔAIC_{oPs}	ΔAIC_{\pm}
IC	HI	10.9	4.7	15.6
IC	FB	25.2	9.9	35.1
IC	BB	89.1	192.4	281.5
IC	CO	64.6	239.0	303.6
IC	HI+CO	104.5	278.1	382.6
IC	NB	123.8	383.8	507.6
IC	DM2	134.8	375.8	510.6
IC	DMO	164.3	433.3	597.6
IC	BB+NB	162.0	456.2	618.2
IC+BB+NB	CO	-2.0	-1.7	-3.7
IC+BB+NB	DM2	-0.5	-0.8	-1.3
IC+BB+NB	DMO	3.6	-1.1	2.5
IC+BB+NB	CO+HI	-1.4	16.8	15.4
IC+BB+NB	HI	-0.3	16.3	16.0
IC+BB+NB+HI	DMO	4.8	0.8	5.6
IC+BB+NB+HI+CO	DMO	4.6	1.3	5.9

← However, we see a statistically significant smoothing of ~150pc

May be effect of pulsar kicks?

Radio counterparts

The present

There are strong selection effects in millisecond pulsar catalogue

- Most are < a few kpc
- GC pulsars all associated with globular clusters

e.g., Bagchi et al 2011

So...the target

Enhanced millisecond pulsar density in the Galactic bulge (out to ~10 deg) _{Calore et al (2015)}

Radio detection prospects

- Model the radio-gamma relation using globular clusters
- Bulge MSP population is just below Parkes High Time Resolution Universe (HTRU) mid-latitude survey, but can be reached by future searches, e.g.,
 - MeerKAT @1.4GHz: ~2.5h per 2x2 region \rightarrow 1-2 bulge MPSs

Calore et al (2016)

Multi-wavelength window to identify the millisecond pulsars

Concluding remarks

There's a mysterious gamma-ray flux from the Galactic Center direction that has persisted 10+ years of scrutiny

We've found evidence that this excess correlates with the stellar bulge

- Supports in-situ pulsars over dark matter origin
- Checked many systematics
- Strong DM constraints in GeV mass range
- Interesting mlti-messenger connections

The Galactic Center will continue to be an interesting region in the **multi-messenger era**

Thank you!

BACKUP SLIDES

Parameters	HTRU (mid)	GBT	MeerKAT	SKA-mid
$\nu [{\rm GHz}]$	1.35	1.4	1.4	1.67
$\Delta \nu [\text{MHz}]$	340	600	1000	770
$t_{\rm samp} \ [\mu s]$	64	41	41	41
$\Delta \nu_{\rm chan} [\rm kHz]$	332	293	488	376
$T_{\rm rx}$ [K]	23	23	25	25
G [K/Jy]	0.74	2.0	2.9	15
Max. Base. Used [km]	2 <u></u>	_	1.0	0.95
Eff. G sub-array $[K/Jy]$	0.74	2.0	2.0	8.5
Ele. $\theta_{\rm FWHM}$ [arcmin]	14	8.6	65	49
Ele. FoV $[deg^2]$	0.042	0.016	0.92	0.52
Beam $\theta_{\rm FWHM}$ [arcmin]	14	8.6	0.88	0.77
Beam FoV [deg ²]	0.042	0.016	0.00017	0.00013
# Beams	13	1	3000	3000
Eff. FoV $[deg^2]$	0.55	0.016	0.51	0.39
$T_{\rm point}$ [min]	9	20	20	20
$T_{108 \text{deg}^2}$ [h]	29	2250	71	92
# Bulge(Foreground) MSPs	1(6)	34(37)	40(41)	207(112)

Sł

MSP population synthesis

MSP population synthesis

The bulge may host $O(10^4)$ MSPs below the Fermi detection threshold to explain the GCE, while maintaining consistency with disk MSPs and globular cluster gamma rays.

Gonthier et al (2018)

(Synthesis modeling of disk MSPs and their application to globular cluster & the bulge).

Gravitational wave counterparts

GW power spectral density

GW emitted due to MSP not being perfectly spherical: e.g., crust elastic strains, B-field effects, instability in rmode

 \rightarrow Aspherciticy parameter: ellipticity

Shunsaku Horiuchi

← Different models for MSP period distribution

Sensitivity

Relies on cross-correlating data from multiple detectors searching for excess from GC

Residuals look featureless Including the bulge, the gamma-ray residuals do not show obvious spherically extended excess

➔ No spherical excess

Macias et al (2019)

Comparison with dwarf galaxies

simple* dark matter is already cornered by dwarf galaxies (*prompt two-body annihilating DM)

Posteriors for GCE-DM varying the MW J-factors, for 4 Galactic diffuse models

Keeley et al (2017)

The parameter that the J-factor is most sensitive to is the local density of DM. As stated in a previous section, we use a value of 0.28 ± 0.08 GeV/cm³ taken from Zhang et al. (2012) [59]. Other groups including Pato et al. (2015) [65] and McKee et al. (2015) [66] tend to find higher values for the local density. To fully resolve the tension between the GCE and the dwarfs, the GCE J-factor needs to increase between 1 and 1.5 orders of magnitude, which translates into a local density of 3 to 6 times greater. As we show, none of these determinations of the local density relieve the GCE-dwarf evidence ratio to be unity.

Important to address systematic assumptions of both dwarf & Milky Way J-factors

e.g., Ando et al (2020), Horigome et al (2019, 2020)

Comparison with Andromeda

Background model uncertainties

More relevant is systematic uncertainty.

Dedicated diffuse models

Calibrated by the Fermi collaboration to the Galactic Center region

Galprop models

Scan range of parameters of diffusion, Bfields, ISRF, cosmic-ray injection, etc...

Fermi collaboration (2016)

Calore et al (2015)

Despite efforts, the excess remains

Add new components systematically

Base	Source	$\log(\mathcal{L}_{\text{Base}})$	$\log(\mathcal{L}_{\text{Base+Source}})$	TS_{Source}	σ	Number of
						source parameters
baseline	FB	-172461.4	-172422.3	78	6.9	19
baseline	NFW-s	-172461.4	-172265.3	392	18.4	19
baseline Gas + IC +	Boxy bulge	-172461.4	-172238.7	445	19.7	19
baseline - 3FGL + Loop I	X-bulge	-172461.4	-172224.1	475	20.5	19
baseline + Sun & Moon	NFW	-172461.4	-172167.9	587	23.0	19
baseline	NB	-172461.4	-171991.8	939	29.5	19
baseline	NP	-172461.4	-169804.1	5315	55.7	64×19
baseline-NP	FB	-169804.1	-169773.6	61	5.8	19
baselineNP	NB	-169804.1	-169697.2	214	13.0	19
baseline-NP	Boxy bulge	-169804.1	-169663.7	281	15.3	19
baseline-NP	NFW	-169804.1	-169623.3	362	17.6	19
baseline-NP	X-bulge	-169804.1	-169616.2	376	18.0	19
baseline+NP+Boxy bulge	NFW	-169663.7	-169598.2	131	9.7	19
baseline+NP+Boxy bulge	NB	-169663.7	-169566.0	195	12.4	19
baseline+NP+Boxy bulge-NB	NFW	-169566.0	-169553.3	25	2.7	19
baseline+NP+Boxy bulge-NFW	NB	-169598.2	-169553.3	90	7.6	19
baseline+NP+NFW	Boxy bulge+NB	-169623.3	-169553.0	140	10.0	2×19
baseline+NP+NFW	X-bulge+NB	-169623.3	-169531.0	185	10.8	2×19
baseline+NP+NB	X-bulge	-169697.2	-169542.0	310	16.1	19
baseline+NP+NB	Boxy bulge	-169697.2	-169566.0	262	14.6	19
baseline+NP+NB	NFW	-169697.2	-169599.0	197	12.4	19
baseline+NP+NB+NFW	X-bulge	-169598.9	-169531.0	136	9.9	19
baseline+NP+X-bulge+NB	NFW	-169542.0	-169531.0	22	2.4	19

→ NFW detected at low significance when bulge is included

Macias et al (2018)

Add new components systematically

Base	Source	$\log(\mathcal{L}_{\text{Base}})$	$\log(\mathcal{L}_{\text{Base+Source}})$	$\mathrm{TS}_{\mathrm{Source}}$	σ	Number of
						source parameters
baseline	FB	-172461.4	-172422.3	78	6.9	19
baseline	NFW-s	-172461.4	-172265.3	392	18.4	19
baseline Gas + IC +	Boxy bulge	-172461.4	-172238.7	445	19.7	19
baseline - 3FGL + Loop I	X-bulge	-172461.4	-172224.1	475	20.5	19
baseline + Sup & Moon	NFW	-172461.4	-172167.9	587	23.0	19
baseline	NB	-172461.4	-171991.8	939	29.5	19
baseline	NP	-172461.4	-169804.1	5315	55.7	64×19
baseline-NP	FB	-169804.1	-169773.6	61	5.8	19
baseline+NP	NB	-169804.1	-169697.2	214	13.0	19
baseline-NP	Boxy bulge	-169804.1	-169663.7	281	15.3	19
baseline-NP	NFW	-169804.1	-169623.3	362	17.6	19
baseline-NP	X-bulge	-169804.1	-169616.2	376	18.0	19
baseline+NP+Boxy bulge	NFW	-169663.7	-169598.2	131	9.7	19
baseline+NP+Boxy bulge	NB	-169663.7	-169566.0	195	12.4	19
baseline+NP+Boxy bulge+NB	NFW	-169566.0	-169553.3	25	2.7	19
baseline+NP+Boxy bulge+NFW	NB	-169598.2	-169553.3	90	7.6	19
baseline+NP+NFW	Boxy bulge+NB	-169623.3	-169553.0	140	10.0	2×19
baseline+NP+NFW	X-bulge+NB	-169623.3	-169531.0	185	10.8	2 imes 19
baseline+NP+NB	X-bulge	-169697.2	-169542.0	310	16.1	19
baseline+NP+NB	Boxy bulge	-169697.2	-169566.0	262	14.6	19
baseline+NP+NB	NFW	-169697.2	-169599.0	197	12.4	19
baseline+NP+NB+NFW	X-bulge	-169598.9	-169531.0	136	9.9	19
baseline+NP+X-bulge+NB	NFW	-169542.0	-169531.0	22	2.4	19

→ NFW detected at low significance when bulge is included

Macias et al (2018)

Add new components systematically

Base	Source	$\log(\mathcal{L}_{\text{Base}})$	$\log(\mathcal{L}_{\text{Base+Source}})$	$\mathrm{TS}_{\mathrm{Source}}$	σ	Number of
						source parameters
baseline	FB	-172461.4	-172422.3	78	6.9	19
baseline	NFW-s	-172461.4	-172265.3	392	18.4	19
baseline Gas + IC +	Boxy bulge	-172461.4	-172238.7	445	19.7	19
baseline - 3FGL + Loop I	X-bulge	-172461.4	-172224.1	475	20.5	19
baseline + Sun & Moon	NFW	-172461.4	-172167.9	587	23.0	19
baseline	NB	-172461.4	-171991.8	939	29.5	19
baseline	NP	-172461.4	-169804.1	5315	55.7	64×19
baseline-NP	FB	-169804.1	-169773.6	61	5.8	19
baseline+NP	NB	-169804.1	-169697.2	214	13.0	19
baseline+NP	Boxy bulge	-169804.1	-169663.7	281	15.3	19
baseline+NP	NFW	-169804.1	-169623.3	362	17.6	19
baseline+NP	X-bulge	-169804.1	-169616.2	376	18.0	19
baseline+NP+Boxy bulge	NFW	-169663.7	-169598.2	131	9.7	19
baseline+NP+Boxy bulge	NB	-169663.7	-169566.0	195	12.4	19
baseline+NP+Boxy bulge+NB	NFW	-169566.0	-169553.3	25	2.7	19
baseline+NP+Boxy bulge+NFW	NB	-169598.2	-169553.3	90	7.6	19
baseline+NP+NFW	Boxy bulge+NB	-169623.3	-169553.0	140	10.0	2×19
baseline+NP+NFW	X-bulge+NB	-169623.3	-169531.0	185	10.8	2 imes 19
baseline+NP+NB	X-bulge	-169697.2	-169542.0	310	16.1	19
baseline+NP+NB	Boxy bulge	-169697.2	-169566.0	262	14.6	19
baseline+NP+NB	NFW	-169697.2	-169599.0	197	12.4	19
baseline+NP+ <u>NB+NFW</u>	X-bulge	-169598.9	-169531.0	136	9.9	19
baseline+NP+X-bulge+NB	NFW	-169542.0	-169531.0	22	2.4	19

→ NFW detected at low significance when bulge is included

Macias et al (2018)

Dark matter systematics

Effects:

- 1. Inner slope, including cores
- 2. Asymmetry
- → Use $0.5 < \gamma < 1.5$, 1kpc core, and axis ratio 0.7

Eg, bulge kinematics, Eris, FIRE simulations

→ Again dark matter model not detected

Kuhlen et al (2012)

Base	Source	$-\log(\mathcal{L}_{\text{Base}})$	$-\log(\mathcal{L}_{Base+Source})$	TS _{Source}	Significance
Baseline $+$ NB $+$ BB	Cored ellipsoidal	-3259834.20	-3259834.45	0.5	0.0σ
Baseline + NB + BB	NFW	-3259834.20	-3259837.79	7.2	0.7σ
Baseline + NB + BB	NFW ellipsoidal	-3259834.20	-3259839.66	10.9	1.3σ
Baseline + NB + BB	Cored	-3259834.20	-3259844.40	20.4	2.6σ

Shunsaku Horiuchi

Abazajian, Horiuchi, et al (2020)